

$\$ 100$

Find the slope both ways: by graphing them AND by using the formula. Show your work for both methods. (That means draw the points and the triangle!)

$$
(-1,8) \text { and }(2,7)
$$

$\$ 100$

Slope $=-1 / 3$

$\$ 200$

Solve WITHOUT a graph: Line M goes through (3,6) and (4,2), and Line \mathbf{N} goes through $(-1,3)$ and ($1,-2$). Which line is steeper?

$\$ 200$

Slope of line M: -4

Slope of line $\mathrm{N}: ~-5 / 2$ or -2.5

Line M is steeper

The slope between point A and $(2,3)$ is 4 . Give three different possibilities for point A.

$\$ 300$

$(3,7) ;(4,11) ;(1,-1) ;(0,-5) ;(-1,-9)$

$\$ 100$

Graph the equation:

$$
y=-5 x
$$

$\$ 100$

Scores
$\$ 200$
Write both equations:

$\$ 200$

$$
\begin{gathered}
y=\frac{1}{2} x+4 \\
y=-\frac{1}{2} x+2
\end{gathered}
$$

$\$ 300$

Find the equation of the line that goes through the points $(2,1)$ and ($3,-1$)

$\$ 300$

$$
y=-2 x+5
$$

(Easiest method is to graph both points, then find the slope and the y-intercept)

$\$ 100$

Patricia's parents kept track of her height from year to year. If you made a graph of this data, should you connect the points? Why or why not?

Age in years(x)	Height in inches (y)
$\mathbf{5}$	38
6	40
7	42
$\mathbf{8}$	44
9	46

$\$ 100$

Yes; the numbers in between the values in the table make sense. She doesn't instantly go from 38 to 40 inches! In part of a year she grows part of the 2 inches.

The Brown family just got a new puppy. If x is the age of the dog in years, then the weight (in pounds) of the dog y can be modeled by the equation $y=2 x+5$. What is the slope, and what does it represent in terms of the situation? What is the yintercept, and what does it represent in terms of the situation?

$\$ 200$

Slope $=2 ;$ the dog is growing 2 pounds per year

Y-intercept = 5; the dog was originally 5 pounds

$\$ 300$

Rick and Carl are going on a road trip. The graph shows the distance remaining after x hours.
a) Write an equation in slope-intercept form.
b) Say what the slope represents in terms of the situation.

$\$ 300$

$$
\text { a) } y=-60 x+240
$$

b) Each hour, their distance remaining goes down by 60. (In other words, they are driving 60 miles per hour)

$\$ 100$

Is this a constant rate of change? Show your work.

x	y
0	4
2	22
4	40
8	76
9	85

$\$ 100$

Yes; the rate of change is 9 for each interval.

$\$ 200$

Melinda is reading a book. At 2:05, she is on page 143. At 2:23, she is on page 152. If she keeps reading at this pace, what page will she be on at 2:37?

$\$ 200$

Page 159

(She is reading $1 / 2$ a page every minute)

$\$ 300$

Joey bought a plant. "x" represents is the number of weeks since Joey bought it and " y " represents the plant's height in inches. Assume the plant grows at a constant rate. How fast is the plant growing, and how tall was the plant when he bought it?

x	y
2	8
5	12.5
8	17
11	21.5
14	26

$\$ 300$

1.5 inches per week; originally 5 inches tall

$\$ 100$

Phil has $\$ 200$ already and begins
a new job where he earns $\$ 12$ per hour. The amount of money Jill
has after working x hours is represented by the equation $\mathrm{y}=$ $15 x+100$. Who will have more money after working a 40 hour week?

$\$ 100$

Jill (she will have \$700; Phil will only have \$680)

John and Paul each had a big math assignment to do. The number of problems John had left is
represented by the equation $y=-4 x+$ 50 , where x represents the number of minutes he has been working. The number of problems Paul has left is given in the table. Who was working faster?

\# of minutes	0	2	5	7	11
\# problems left	60	54	45	39	27

$\$ 200$

John (4 problems per minutes; Paul only does 3 problems per minute)

Tree A was 25 feet tall 5 years

 after it was planted. It was 29 feet tall 6 years after it was planted. Tree B was 32 feet tall 5 years after it was planted, and 38 feet tall 6 years after it was planted. Which tree was taller when it was planted, and how much taller was it?
$\$ 300$

Tree A; 3 feet taller ($\mathbf{5} \mathrm{ft}$. vs. 2 ft .)

FINAL JEOPARDY

Put these in order from smallest slope to largest slope.

틀

Between ($-5,15$) and ($-7,2$)

FINAL JEOPARDY

$$
\begin{gathered}
D(m=3) \\
E(m=3.5) \\
A(m=4) \\
B(m=5) \\
F(m=6.5) \\
C(m=8)
\end{gathered}
$$

