

RULES:

Every team does every problem.
Answers MUST go on your own paper.
The group answer goes on the whiteboard.

I will give a 20 second timer. Your group's answer MUST go up when the timer goes off!

$\$ 100$

Find the slope both ways: by graphing them AND by using the formula. Show your work for both methods. (That means draw the points and the triangle!)

$$
(-1,8) \text { and }(2,7)
$$

$$
\text { Slope }=-1 / 3
$$

$\$ 200$

Solve WITHOUT a graph: Line M goes through $(3,6)$ and $(4,2)$, and Line N goes through $(-1,3)$ and (1,-2). Find the slope of both lines and tell which line is steeper:

$\$ 200$

Slope of line M: -4 Slope of line N: -5/2 or -2.5

Line M is steeper

$\$ 300$

The slope between point A and
$(2,3)$ is 4 . Give three different possibilities for point A.
$\$ 300$
$(3,7) ;(4,11) ;(1,-1) ;(0,-5) ;(-1,-9)$

$\$ 200$

Write both equations:

$\$ 200$

$$
\begin{gathered}
y=\frac{1}{2} x+4 \\
y=-\frac{1}{2} x+2
\end{gathered}
$$

\$300

Find the equation of the line that goes through the points $(2,1)$ and

$$
(3,-1)
$$

$$
y=-2 x+5
$$

(Easiest method is to graph both points, then find the slope and the y-intercept)

$\$ 100$

Patricia's parents kept track of her height from year to year. If you made a graph of this data, should you connect the points? Why or why not?

Age in years (x)	Height in inches (y)
$\mathbf{5}$	$\mathbf{3 8}$
$\mathbf{6}$	$\mathbf{4 0}$
$\mathbf{7}$	$\mathbf{4 2}$
$\mathbf{8}$	$\mathbf{4 4}$
$\mathbf{9}$	$\mathbf{4 6}$

Yes; the numbers in between the values in the table make sense. She doesn't instantly go from 38 to 40 inches! In part of a year she grows part of the 2 inches.

$\$ 100$

$\$ 200$

The Brown family just got a new puppy. If x is the age of the dog in years, then the weight (in pounds) of the dog y can be modeled by the

$$
\text { equation } \mathrm{y}=2 \mathrm{x}+5 \text {. }
$$

a) What is the slope, and what does it represent in terms of the situation?
b) What is the y-intercept, and what does it represent in terms of the situation?

$\$ 200$

Slope $=2$; the dog is growing 2 pounds per year

Y-intercept = 5; the dog was originally 5 pounds
a) $y=-60 x+240$
b) Each hour, their distance remaining goes down by 60. (In other words, they are driving 60 miles per hour)

$\$ 100$

Is this a constant rate of change? Show your work.

x	y
$\mathbf{0}$	4
2	20
4	36
8	60
9	68

$\$ 100$

No - the rate of change for the interval from $4-8$ is only 6 , the rate of change for the other intervals is 8 .

$\$ 200$

Melinda is reading a book. At 2:05, she is on page 143. At 2:23, she is on page 152. If she keeps reading at this pace, what page will she be on at 2:37?

Page 159
(She is reading $1 / 2$ a page every minute)

$\$ 300$

Joey bought a plant. " x " represents is the number of weeks since Joey bought it and " y " represents the plant's height in inches. Assume the plant grows at a constant rate. How fast is the plant growing, and how tall was the plant when he bought it?

x	y
2	8
5	12.5
8	17
11	21.5
14	26

$\$ 100$

Phil has $\$ 200$ already and begins a new job where he earns $\$ 12$ per hour. The amount of money Jill has after working x hours is represented by the equation $\mathrm{y}=$ $15 x+100$. Who will have more money after working a 40 hour week?

$\$ 100$

Jill (she will have \$700; Phil will only have \$680)

$\$ 200$

John and Paul each had a big math assignment to do. The number of problems John had left is represented by the equation $y=-4 x+$ 50 , where x represents the number of minutes he has been working. The number of problems Paul has left is given in the table. Who was working faster?

\# of minutes	$\mathbf{0}$	2	5	7	11
$\#$ problems lefif	$\mathbf{6 0}$	$\mathbf{5 4}$	$\mathbf{4 5}$	$\mathbf{3 9}$	$\mathbf{2 7}$

$\$ 300$

Tree A was 25 feet tall 5 years after it was planted. It was 29 feet tall 6 years after it was planted. Tree B was 32 feet tall 5 years after it was planted, and 38 feet tall 6 years after it was planted. Which tree was taller when it was planted, and how much taller was it?

$\$ 200$

John (4 problems per minutes; Paul only does 3 problems per minute)

Tree A; 3 feet taller ($\mathbf{5} \mathrm{ft}$. vs. 2 ft .)

FINAL JEOPARDY

Put these in order from smallest slope to largest slope.

FINAL JEOPARDY

$$
D(m=3)
$$

$$
E(m=3.5)
$$

$$
A(m=4)
$$

$$
B(m=5)
$$

$$
F(m=6.5)
$$

$$
C(m=8)
$$

