SEL

 10 morning habits geniuses use to restart the brain

Warmup 9/ (# letters in the Spanish phrases for: "sit down" + "stand up" - "yes")

Created by Ms. Marlin

1. Complete the table using the function f(x) = 5 - 2x:

x	-3	-2	-1	0	I	2	3
y							

- 2. Draw your own coordinate plane (you don't have to make it super detailed just an x and y-axis and some tick marks) and use your table to draw the graph.
- 3. Is your graph a FUNCTION? Explain why or why not.

Is this a function?

•
$$f(x) = 5 - 2x$$

X	-3	-2	-1	0	I	2	3
y	П	9	7	5	3	Ι	-1

ONE IMPORTANT THING TO NOTICE...

 Any mathematical rule f(x) = ____ will be a function because you will always get ONE answer when you plug a number in for x.

 You will never get any points directly on top of each other in an f(x) = _____
 graph because each x will only have ONE y!

Is this a function?

Unit I Test Retake deadline is Friday!

 Must turn in corrections/extra practice by THURSDAY.

 May want to turn in EARLIER so that you have enough time to fix/improve them.

May always ask me for help on these!

Table of Contents

```
p. I Converting Fractions and Decimals (1.1)
```

- p. 2 Roots (1.8 & 1.9)
- p. 3 Solving x^2 and x^3 Equations (1.8)
- p. 4 Rational vs. Irrational (1.1)
- b. 5 What is a function?
- p. 6 Function Notation: f(x)
- p. 7 Linear vs. Nonlinear Functions

Linear vs. Nonlinear Functions

Objectives:

- -Predict if an equation will be linear or nonlinear
- -Predict if a table will be linear or nonlinear
- -Learn a strategy to help figure out a rule

When will an equation be linear, and when will it be nonlinear???

• Theories???

 Let's explore more in desmos...

COPY:

Linear Equations	Nonlinear Equations
Anything using the pattern f(x) =x + f(x) =x	Exponents other than I
Anything without any of that stuff	Variable inside a square root
	Variable in a denominator
	Variable inside an absolute value

x² graphs look like

Absolute value graphs look like

Square root graphs look like:

• Variable in the denominator graphs look like:

 There ARE other, more complicated things that also make nonlinear graphs. (sin, cos, logarithms, etc.)
 You will learn about these in later math classes.

IMPORTANT:

 Diagonal lines ARE considered "straight lines!!!"

$$f(x) = 4x + 3$$

$$f(x) = x^2 - 4$$

Nonlinear

$$f(x) = \frac{x}{5} + 4$$

$$f(x) = \frac{6}{x} - 2$$

Nonlinear

$$f(x) = x^3 + 4x - 3$$

Nonlinear

$$f(x) = 100 - x$$

$$f(x) = 5x - 2x$$

$$f(x) = -\frac{3}{4}x + \frac{1}{7}$$

$$f(x) = 4\sqrt{x} - 3$$

Nonlinear

$$f(x) = |2x + 10|$$
Nonlinear

$$f(x) = 6$$

$$f(x) = (4x - 3)^2$$

Nonlinear

$$6 - \frac{3}{4}x = f(x)$$
Linear

$$f(x) = x(x-4)$$

Nonlinear

(turns into $f(x) = x^2 + 4x$)

$$f(x) = 2x^3 - \sqrt{x} + |x - 4| + \frac{3}{x}$$

Nonlinear

$$2x + 4y = 5$$

$$y = 3x + \sqrt{2}$$

PATTERNS...

$$f(x) = 4x$$

x	f(x)
1	
2	
3	
4	
5	

$$g(x) = 4x + 5$$

x	g(x)
1	
2	
3	
4	
5	

$$h(x) = 4x - 2$$

x	h(x)
1	
2	
3	
4	
5	

$$j(x) = -5x + 20$$

$$k(x) = 7x - 3$$

x	k(x)
I	
2	
3	
4	
5	

$$j(x) = -5x + 20$$
 $k(x) = 7x - 3$ $l(x) = 100x + 5$

X	l(x)
I	
2	
3	
4	
5	

Multiplication table...

Multiplication

X	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

NOTICE: The numbers in the "4s" row are all 4 apart.

So the outputs of "y = 4x" would all be 4 apart.

If I added one to each number in the 4's row, would they still all be 4 apart?

Therefore, the outputs of y = 4x + I would still all be 4 apart.

HOMEWORK

Create your own functions WS