

- I0 morning habits geniuses use to restart the brain

Warmup 9 / (\# letters in the Spanish phrases for:"sit down" + "stand up" - "yes")
 Created by Ms. Marlin

I. Complete the table using the function $f(x)$
= $5-2 x$:

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}							

2. Draw your own coordinate plane (you don't have to make it super detailed - just an x and y-axis and some tick marks) and use your table to draw the graph.
3. Is your graph a FUNCTION? Explain why or why not.

Is this a function?

- $f(x)=5-2 x$

ONE IMPORTANT THING TO NOTICE...

- Any mathematical rule $f(x)=$ will be a function because you will always get ONE answer when you plug a number in for x .
- You will never get any points directly on top of each other in an $f(x)=$ graph because each x will only have ONE y !

Is this a function?

Unit I Test Retake deadline is

Friday!

- Must turn in corrections/extra practice by THURSDAY.
- May want to turn in EARLIER so that you have enough time to fix/improve them.
- May always ask me for help on these!

Table of Contents

p. I Converting Fractions and Decimals (I.I)
p. 2 Roots (I. 8 \& I.9)
p. 3 Solving x^{2} and x^{3} Equations (1.8)
p. 4 Rational vs. Irrational (I.I)
p. 5 What is a function?
p. 6 Function Notation: $f(x)$
p. 7 Linear vs. Nonlinear Functions

Linear vs. Nonlinear Functions

Objectives:
-Predict if an equation will be linear or nonlinear
-Predict if a table will be linear or nonlinear
-Learn a strategy to help figure out a rule

When will an equation be linear, and when will it be nonlinear???
-Theories???

- Let's explore more in desmos...

COPY:

Linear Equations

Nonlinear Equations

Anything using the pattern
Exponents other than I $f(x)=\ldots \quad x+$
$f(x)=\ldots x-$ \qquad
Anything without any of that stuff

Variable inside a square root
Variable in a denominator
Variable inside an absolute value

x^{2} graphs look like
Absolute value graphs look like

- Square root graphs look like:
- Variable in the denominator graphs look like:

- There ARE other, more complicated things that also make nonlinear graphs. (sin, cos, logarithms, etc.) You will learn about these in later math classes.

IMPORTANT:

- Diagonal lines ARE considered "straight lines!!!"
- Straight:
- Also straight:

Linear or Nonlinear?

$$
f(x)=4 x+3
$$

Linear

Linear or Nonlinear?

$$
f(x)=x^{2}-4
$$

Nonlinear

Linear or Nonlinear?

\boldsymbol{x}

Linear

Linear or Nonlinear?

6

Linear or Nonlinear?

$f(x)=x^{3}+4 x-3$

Nonlinear

Linear or Nonlinear?

$$
f(x)=100-x
$$

Linear

Linear or Nonlinear?

$$
f(x)=5 x-2 x
$$

Linear or Nonlinear?

$$
f(x)=-\frac{3}{4} x+\frac{1}{7}
$$

Linear

Linear or Nonlinear?

$$
f(x)=4 \sqrt{x}-3
$$

Nonlinear

Linear or Nonlinear?

$$
\begin{gathered}
f(x)=|2 x+10| \\
\text { Nonlinear }
\end{gathered}
$$

Linear or Nonlinear?

$$
f(x)=6
$$

Linear

Linear or Nonlinear?

$$
f(x)=(4 x-3)^{2}
$$

Nonlinear

Linear or Nonlinear?

$$
6-\frac{3}{4} x=f(x)
$$

Linear or Nonlinear?

$$
f(x)=x(x-4)
$$

Nonlinear
(turns into $f(x)=x^{2}+4 x$)

Linear or Nonlinear?

$$
f(x)=2 x^{3}-\sqrt{x}+|x-4|+\frac{3}{x}
$$

Linear or Nonlinear?

$$
2 x+4 y=5
$$

Linear or Nonlinear?

Linear

PATTERNS...

$f(x)=4 x$		$g(x)=4 x+5$		$h(x)=4 x-2$	
\times	$f(\mathrm{x})$	\times	$\mathrm{g}(\mathrm{x})$	x	$\mathrm{h}(\mathrm{x})$
1		1		1	
2		2		2	
3		3		3	
4		4		4	
5		5		5	
$j(x)=-5 x+20$		$k(x)=$	$x-3$	$l(x)=$	$00 x+5$
\times	i(x)	\times	$\mathrm{k}(\mathrm{x})$	\times	$1(\mathrm{x})$
1		1		1	
2		2		2	
3		3		3	
4		4		4	
5		5		5	

Multiplication table...

Multiplication

X	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

NOTICE:The numbers in the "4s" row are all 4 apart.

So the outputs of " $y=4 x$ " would all be 4 apart.

If I added one to each number in the 4's row, would they still all be 4 apart?

Therefore, the outputs of $y=$ $4 \mathrm{x}+\mathrm{I}$ would still all be 4 apart.

HOMEWORK

- Create your own functions WS

