Warmup 9/ (The age you are on your

 quinceanera + the \# of strands in a braid) Created by Ms. Collier***THERE SHOULD BE A GRAPHING SHEET, MARKER, ERASER INSIDE YOUR DESK!***
I. Write down two examples of equations that would be LINEAR.
2. Write down two examples of equations that would be NONLINEAR.
3. Find $f(-4)$ if $f(x)=3 x-6$.
4. Find $g(5)$ if $g(x)=\frac{1}{2} x-9$.

FUNCTIONS QUIZ THURSDAY!

TOPICS COVERED:

- Creating/matching graphs of stories
- Is it a function? Table/graph/real-world situation
- Evaluating functions (finding f(3), etc.)
- Writing a function rule from a table (guess my rule)
- Writing a function rule from a real-world situation and labeling inputs/outputs
- Graphing functions using a table
- Understanding which equations will be linear and nonlinear
- Identifying key features of graphs
- Increasing/decreasing
- X- and Y-intercepts
- Slope
- THIS LISTWILL BE POSTED ON MY WEBSITE!

One more guess my rule...

PATTERNS...

$f(x)=4 x$	
X	$\mathrm{f}(\mathrm{x})$
1	4
2	8
3	12
4	16
5	20
$j(x)=-5 x+20$	
x	j(x)
1	15
2	10
3	5
4	0
5	-5

\mathbf{x}	$\mathrm{k}(\mathrm{x})$
$\mathbf{1}$	4
2	11
3	18
4	25
5	32

$h(x)=4 x-2$

x	$h(x)$
1	2
2	6
3	10
4	14
5	18

$I(x)=100 x+5$

x	$I(x)$
1	105
2	205
3	305
4	405
5	505

Multiplication table...

Multiplication

X	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

NOTICE:The numbers in the "4s" row are all 4 apart.

So the outputs of " $y=4 x$ " would all be 4 apart.

If I added one to each number in the 4's row, would they still all be 4 apart?

Therefore, the outputs of $y=$ $4 \mathrm{x}+\mathrm{I}$ would still all be 4 apart.

EXTREMELY IMPORTANT PATTERN:

- If your outputs increase by a certain number, that is the "multiplying" number in the equation.
- Outputs increase by $4 \rightarrow$ Rule has a " $4 x$ "
- Outputs decrease by $2 \rightarrow$ Rule has a" $-2 x$ "
- NOTE:This only works if your inputs are consecutive numbers.
- (we will write one more thing here in a little bit leave some space)

So, how does this help me with "guess my rule?!?"

- Guess consecutive numbers!!!

COPY:

What's the rule???

x	$\mathrm{a}(\mathrm{x})$
I	4
2	7
3	10
4	13
5	16

- The outputs increase by 3, so $a(x)=3 x+$ something
- Test out numbers \& see that you also need to add I.

$$
\text { - } a(x)=3 x+1
$$

Whiteboard: Can you get these rules???

	x	a(x)		x	b(x)
I)	1	4	2)	5	15
	2	7		6	20
	3	10		7	25
	4	13		8	30
	5	16		9	35
$a(x)=3 x+1$			$b(x)=5 x-10$		
3)	x	c(x)	4)	x	d(x)
	-2	-7		0	10
	-1	-5		1	6
	0	-3		2	2
	1	-1		3	-2
	2	1		4	-6
$c(x)=2 x-3$			d(x)	$=$	+ 10

One more...

x	$f(x)$
1	3
2	6
3	11
4	18
5	27

- The "trick" does not work here, because the outputs do not increase by a constant amount.
- Tables like this have different types of equations that are NOT "times something plus or minus something"
- This table was most likely created by an equation with an exponent somewhere.

Look at \#I on your Graphing
 Functions Sheet...
 - Would our "trick" work for this one?

- The outputs are increasing by 2 . And the equation has a " $2 x$!"
- Based on the table, does it make sense why this graph would be a straight line?

NOTICE:

- \#3 had a " $\frac{1}{2} x$ " in the rule. And the outputs increase by $1 / 2$.
- \#5 had a "-3x" in the rule. And the outputs decrease by -3 .

EXTREMELY IMPORTANT PATTERN:

- If your outputs increase by a certain number, that is the "multiplying" number in the equation.
- Outputs increase by $4 \rightarrow$ Rule has a " $4 x$ "
- Outputs decrease by $2 \rightarrow$ Rule has a"- $2 x$ "
- NOTE:This only works if your inputs are consecutive numbers.
- ***If the outputs increase or decrease by a constant number, your graph will be a straight line!!!***

Summarizing everything today...

- Any equation with something like a " $5 x$ " will have outputs that increase by 5 .
- This will also cause the graph to be a straight line (linear).
- Things like exponents, square roots, and absolute value make the outputs NOT have a constant increase.
- These graphs will NOT be a straight line.

KEY FEATURES OF GRAPHS

Key Features of Graphs

Increasing: Where the y-values go up (from left to right) Decreasing:Where the y-values go down (from left to right)
X-intercept: Where the graph crosses the x -axis Y-intercept: Where the graph crosses the y-axis Slope: How steep the graph is

ALWAYS READ A GRAPH FROM LEFT TO RIGHT!!!

$a(x)=2 x+4$
$c(x)=\frac{1}{2} x+8$
$e(x)=2-3 x$

How many graphs have a constant slope?

How many graphs are increasing only?
How many graphs are decreasing, then increasing?
How many graphs have ONE x-intercept?

$$
\mathrm{b}(\mathrm{x})=\mathrm{x}^{2}-3 \quad d(x)=|x-2| \quad \mathrm{f}(x)=\sqrt{x+10}
$$

Increasing/decreasing?
Constant slope?
x-intercept?
y-intercept?

Increasing/decreasing?
Constant slope?
x-intercept?
y-intercept?

Both increasing

Which graph has a greater \mathbf{x}-intercept? Graph II
Which graph has a greater \boldsymbol{y}-intercept? Graph I

Which graph has a greater slope?
Graph I

Graph 2
Graph 2

Key features?

Increasing/decreasing? Always increasing

X-intercept?

-8

Y-intercept?
6
Describe the slope. The slope is not constant.

Above and beyond answer:
the slope starts out very steep, then gets gradually less steep

Key features?

Increasing/decreasing?
Increasing, then decreasing, then increasing, then
decreasing, etc.
X-intercept?
$-2 \pi,-\pi, 0, \pi, 2 \pi$
Y-intercept?
0
Describe the slope. The slope is not constant.

Key features?

Increasing/decreasing?
Always increasing

X-intercept?

None

Y-intercept?
About I. 5
Describe the slope.
The slope is not constant. It starts
not very steep,
then gets steeper and steeper.

Choose the graph that is:

- Decreasing, then increasing, then decreasing
- Has an x-intercept of 4

Draw a graph with the following characteristics:

- x and y-intercepts are both zero
- Always decreasing
- Slope doesn't change

Draw a graph with the following characteristics:
 - Always increasing

- The slope changes

HOMEWORK

- Create your own functions WS

