Warmup 9/ (The age you are on your quinceanera + the # of strands in a braid) Created by Ms. Collier

THERE SHOULD BE A GRAPHING SHEET, MARKER, ERASER INSIDE YOUR DESK!

- I. Write down two examples of equations that would be LINEAR.
- 2. Write down two examples of equations that would be NONLINEAR.

3. Find f(-4) if f(x) =
$$3x - 6$$
.
4. Find g(5) if $g(x) = \frac{1}{2}x - 9$.

FUNCTIONS QUIZ THURSDAY!

TOPICS COVERED:

- Creating/matching graphs of stories
- Is it a function? Table/graph/real-world situation
- Evaluating functions (finding f(3), etc.)
- Writing a function rule from a table (guess my rule)
- Writing a function rule from a real-world situation and labeling inputs/outputs
- Graphing functions using a table
- Understanding which equations will be linear and nonlinear
- Identifying key features of graphs
 - Increasing/decreasing
 - X- and Y-intercepts
 - Slope

• THIS LIST WILL BE POSTED ON MY WEBSITE!

One more guess my rule...

PATTERNS...

f(x)	= 4>	C	g(x)	= 4	x +	5	h(x)	= 4	x –	2
x	f(x)			x	g(x)			x	h(x)	
1	4			I	9			I	2	
2	8			2	13			2	6	
3	12			3	17			3	10	
4	16			4	21			4	14	
5	20			5	25			5	18	
j(x) :	= -5	x + 20	k(x)	= 7	x –	3	l(x)	= (00x	+ 5
j(x) : ×	= -5	x + 20	k(x)	= 7 ×	<mark>X —</mark> k(x)	3 	l(x)	= (×	00x	+ 5
		x + 20	k(x)			3	l(x)			+ 5
	j(x)	x + 20	k(x)		k(x)	3	I(x)	X	l(x)	+ 5
x I	j(x) 15	x + 20	k(x)	x I	k(x) 4	3	I(x)	x I	l(x) 105	+ 5
× 2	j(x) 15 10	x + 20	k(x)	x 1 2	k(x) 4 11	3	I(x)	x I 2	l(x) 105 205	+ 5

Multiplication table...

Multiplication

X	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

PalaceCurriculum con

NOTICE:The numbers in the "4s" row are all 4 apart.

So the outputs of "y = 4x" would all be 4 apart.

If I added one to each number in the 4's row, would they still all be 4 apart?

Therefore, the outputs of y = 4x + 1 would still all be 4 apart.

EXTREMELY IMPORTANT PATTERN:

- If your outputs increase by a certain number, that is the "multiplying" number in the equation.
 - Outputs increase by $4 \rightarrow$ Rule has a "4x"
 - Outputs decrease by $2 \rightarrow$ Rule has a "-2x"
- NOTE: This only works if your <u>inputs</u> are consecutive numbers.
- (we will write one more thing here in a little bit leave some space)

So, how does this help me with "guess my rule???"

• Guess <u>consecutive numbers</u>!!!

What's the rule???

x	a(x)
1	4
2	7
3	10
4	13
5	16

- The outputs increase by 3, so a(x) = 3x + something
- Test out numbers & see that you also need to add I.

$$a(x) = 3x + 1$$

Whiteboard: Can you get these rules???

	x	a(x)	
I)	I	4	
	2	7	
	3	10	
	4	13	
	5	16	
a	(x) =	3x +	
		_	
	X	c(x)	-
3)	x -2		
	X	c(x)	_
	x -2	c(x) -7	
	x -2 -1	c(x) -7 -5	
	x -2 -1 0	c(x) -7 -5 -3	

	x	b(x)
2)	5	15
	6	20
	7	25
	8	30
	9	35
b(x)) = 5x	- 10
	x	d(x)
4)	0	10
	I	6
	2	2
	3	-2
	4	-6
d(x)	= -4x	+ 10

One more...

x	f(x)
I	3
2	6
3	11
4	18
5	27

- The "trick" does not work here, because the outputs do not increase by a constant amount.
- Tables like this have different types of equations that are NOT "times something plus or minus something"
 - This table was most likely created by an equation with an exponent somewhere.

Look at #1 on your Graphing Functions Sheet...

- Would our "trick" work for this one?
- The outputs are increasing by 2. And the equation has a "2x!"
- Based on the table, does it make sense why this graph would be a straight line?

NOTICE:

• #3 had a " $\frac{1}{2}x$ " in the rule. And the outputs increase by $\frac{1}{2}$.

 #5 had a "-3x" in the rule. And the outputs decrease by -3.

EXTREMELY IMPORTANT PATTERN:

- If your outputs increase by a certain number, that is the "multiplying" number in the equation.
 - Outputs increase by $4 \rightarrow$ Rule has a "4x"
 - Outputs decrease by $2 \rightarrow$ Rule has a "-2x"
- NOTE: This only works if your <u>inputs</u> are consecutive numbers.
- ***If the outputs increase or decrease by a constant number, your graph will be a straight line!!!***

Summarizing everything today...

- Any equation with something like a "5x" will have outputs that increase by 5.
- This will also cause the graph to be a straight line (linear).
- Things like exponents, square roots, and absolute value make the outputs NOT have a constant increase.
- These graphs will NOT be a straight line.

KEY FEATURES OF GRAPHS

a(x) = 2x + 4

$$c(x) = \frac{1}{2}x + 8$$

-6 -4 -2

-2

6

Key Features of Graphs

Increasing: Where the y-values go up (from left to right) Decreasing: Where the y-values go down (from left to right) X-intercept: Where the graph crosses the x-axis Y-intercept: Where the graph crosses the y-axis Slope: How steep the graph is

ALWAYS READ A GRAPH FROM LEFT TO RIGHT!!!

Increasing/decreasing? Constant slope? x-intercept? y-intercept? Increasing/decreasing? Constant slope? x-intercept? y-intercept?

Increasing/Decreasing? Both increasing Which graph has a greater x-intercept? Graph I Which graph has a greater y-intercept? Graph I Which graph has a greater slope? Graph 2

Increasing/decreasing? **Always increasing** X-intercept? -8 **Y-intercept?** 6 Describe the **slope**. The slope is not constant. **Above and beyond answer:** the slope starts out very steep, then gets gradually less steep

Key features?

Increasing/decreasing? Increasing, then decreasing, then increasing, then decreasing, etc. X-intercept? $-2\pi, -\pi, 0, \pi, 2\pi$ Y-intercept? 0 Describe the slope. The slope is not constant.

Increasing/decreasing? **Always increasing** X-intercept? None **Y-intercept**? About 1.5 Describe the **slope**. The slope is not constant. It starts not very steep, then gets steeper and steeper.

Choose the graph that is:

- Decreasing, then increasing, then decreasing
- Has an x-intercept of 4

Draw a graph with the following characteristics:

• x and y-intercepts are <u>both</u> zero

Always decreasing

Slope doesn't change

Draw a graph with the following characteristics:

- Always increasing
- The slope changes

HOMEWORK

Create your own functions WS