Warmup 9/ (The age you are when you can first vote) Created by Mr. Lischwe

Try to figure out the rule from the table.
 Write it in function notation.

X	d(x)
2	27
3	33
4	39
5	45
6	51

$$d(x) = 6x + 15$$

2) EARLY FINISHERS: Compare homework answers!

FUNCTIONS QUIZ FRIDAY!

TOPICS COVERED:

- Creating/matching graphs of stories
- Is it a function? Table/graph/real-world situation
- Evaluating functions (finding f(3), etc.)
- Writing a function rule from a table (guess my rule)
- Writing a function rule from a real-world situation and labeling inputs/outputs
- Graphing functions using a table
- Understanding which equations will be linear and nonlinear
- Identifying key features of graphs
 - Increasing/decreasing
 - X- and Y-intercepts
 - Slope
- THIS LIST WILL BE POSTED ON MY WEBSITE!

IMPORTANT PATTERN:

•f(x) = ___x + ___ is always a
straight line!!!

PATTERNS...

$$f(x) = 4x$$

x	f(x)
1	4
2	8
3	12
4	16
5	20

$$g(x) = 4x + 5$$

X	g(x)
1	9
2	13
3	17
4	21
5	25

$$h(x) = 4x - 2$$

x	h(x)
1	2
2	6
3	10
4	14
5	18

$$j(x) = -5x + 20$$
 $k(x) = 7x - 3$

$$k(x) = 7x - 3$$

x	k(x)
1	4
2	11
3	18
4	25
5	32

$$I(x) = 100x + 5$$

x	l(x)
1	105
2	205
3	305
4	405
5	505

Multiplication table...

Multiplication

X	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

NOTICE: The numbers in the "4s" row are all 4 apart.

So the outputs of "y = 4x" would all be 4 apart.

If I added one to each number in the 4's row, would they still all be 4 apart?

Therefore, the outputs of y = 4x + I would still all be 4 apart.

EXTREMELY IMPORTANT PATTERN:

- If your inputs are consecutive numbers, and your outputs increase by a constant number, that is the "multiplying" number in the equation.
 - Outputs increase by 4 → Rule has a "4x"
 - Outputs decrease by 2 \rightarrow Rule has a "-2x"

 (we will write one more thing here in a little bit – leave some space)

So, how does this help me with "guess my rule???"

Guess consecutive numbers!!!

COPY:

What's the rule???

X	a(x)
I	4
2	7
3	10
4	13
5	16

- The outputs increase by 3,
 so a(x) = 3x + something
- Test out numbers & see that you also need to add I.

$$\bullet \quad a(x) = 3x + 1$$

Whiteboard: Can you get these rules???

	x	a(x)
1)	1	4
	2	7
	3	10
	4	13
	5	16

$$a(x) = 3x + 1$$

3)
$$\begin{array}{c|cccc} x & c(x) \\ -2 & -7 \\ -1 & -5 \\ 0 & -3 \\ 1 & -1 \\ 2 & 1 \\ c(x) = 2x - 3 \end{array}$$

	X	b(x)
2)	5	15
	6	20
	7	25
	8	30
	9	35

$$b(x) = 5x - 10$$

`	x	d(x)
)	0	10
	I	6
	2	2
	3	-2
	4	-6
_	_	

$$d(x) = -4x + 10$$

One more...

x	f(x)
I	3
2	6
3	11
4	18
5	27

- The "trick" does not work here, because the outputs do not increase by a constant amount.
- Tables like this have different types of equations that are NOT "times something plus or minus something"
 - This table was most likely created by an equation with an exponent somewhere.

Look at #1 on your Graphing Functions Sheet...

• Would our "trick" work for this one?

 The outputs are increasing by 2. And the equation has a "2x!"

 Based on the table, does it make sense why this graph would be a straight line?

NOTICE:

• #3 had a " $\frac{1}{2}x$ " in the rule. And the outputs increase by $\frac{1}{2}$.

• #5 had a "-3x" in the rule. And the outputs decrease by -3.

EXTREMELY IMPORTANT PATTERN:

- If your inputs are consecutive numbers, and your outputs increase by a constant number, that is the "multiplying" number in the equation.
 - Outputs increase by $4 \rightarrow \text{Rule has a "4x"}$
 - Outputs decrease by 2 \rightarrow Rule has a "-2x"
- ***If the outputs increase or decrease by a constant number, your graph will be a straight line!!!***

Summarizing everything...

- Any equation with something like a "5x" will have outputs that increase by 5.
- This will also cause the graph to be a straight line (linear).
- Things like exponents, square roots, and absolute value make the outputs NOT have a constant increase.
- These graphs will NOT be a straight line.

KEY FEATURES OF GRAPHS

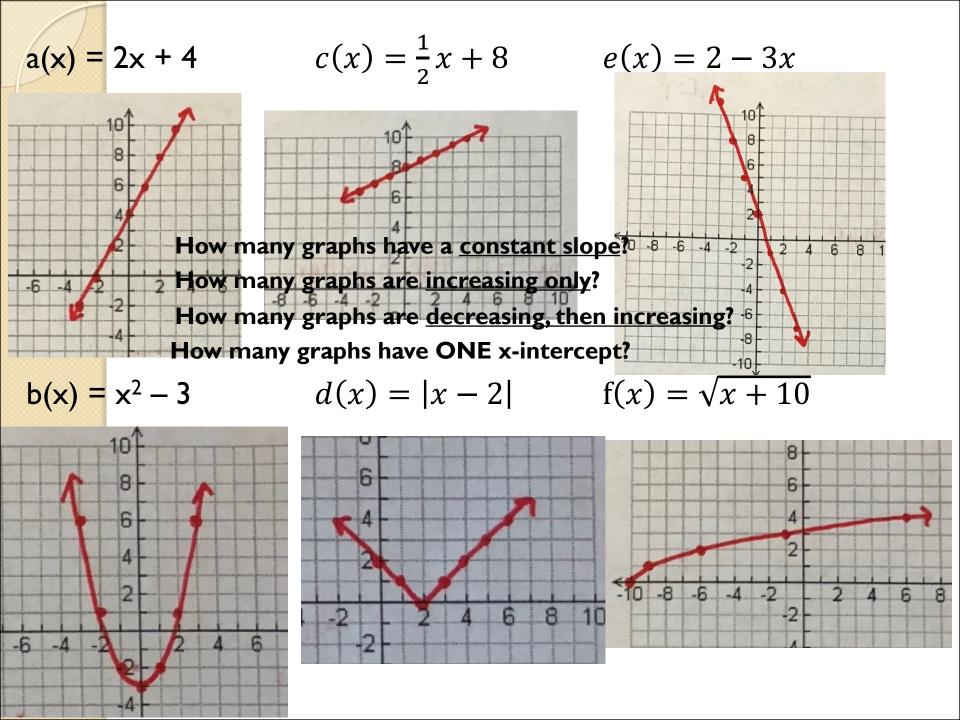
$$a(x) = 2x + 4$$

$$c(x) = \frac{1}{2}x + 8$$

$$e(x) = 2 - 3x$$

$$\begin{vmatrix} 10 & 10 & 10 \\ 6 & 4 & 4 \\ 2 & 2 & 4 & 6 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 & 10 \\ 8 & 6 & 4 & 2 & 2 & 4 & 6 & 8 \\ 9 & 6 & 6 & 6 & 6 & 6 & 6 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 \\ 9 & 7 & 7 & 7 \\ 9$$

Key Features of Graphs


<u>Increasing</u>: Where the y-values go up (from left to right) <u>Decreasing</u>: Where the y-values go down (from left to right)

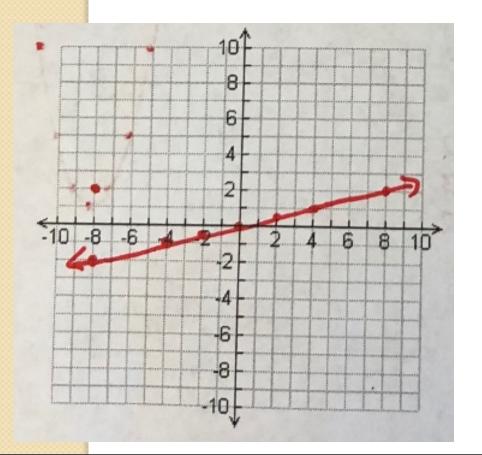
X-intercept: Where the graph crosses the x-axis

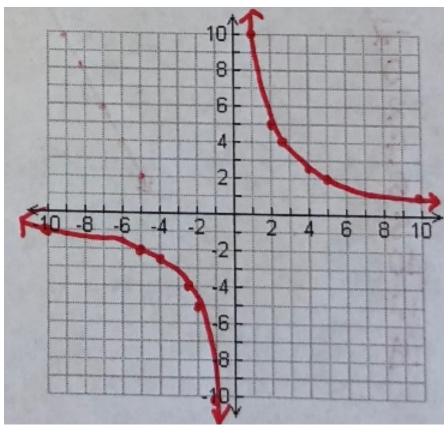
Y-intercept: Where the graph crosses the y-axis

Slope: How steep the graph is

ALWAYS READ A GRAPH FROM LEFT TO RIGHT!!!

Increasing/decreasing?
Constant slope?
x-intercept?


y-intercept?

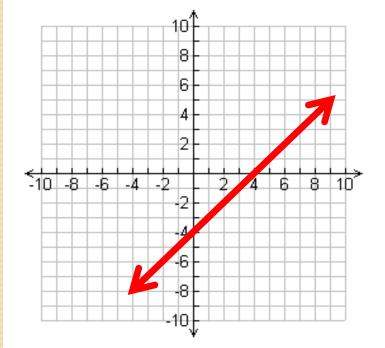

Increasing/decreasing?

Constant slope?

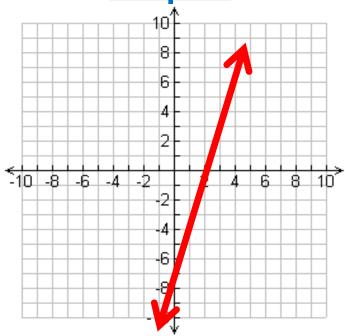
x-intercept?

y-intercept?

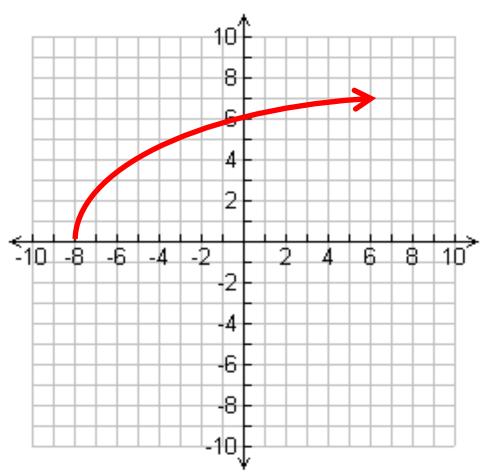
Increasing/Decreasing?


Both increasing

Which graph has a greater x-intercept? Graph |


Which graph has a greater y-intercept? Graph I

Which graph has a greater slope? Graph 2


Graph I

Graph 2

Key features?

Increasing/decreasing?
Always increasing

X-intercept?

-8

Y-intercept?

6

Describe the **slope**.

The slope is not constant.

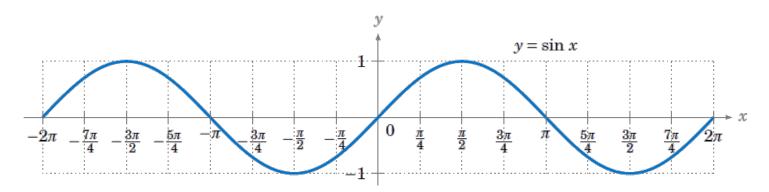
Above and beyond answer: the slope starts out very steep, then gets gradually less steep

Key features?

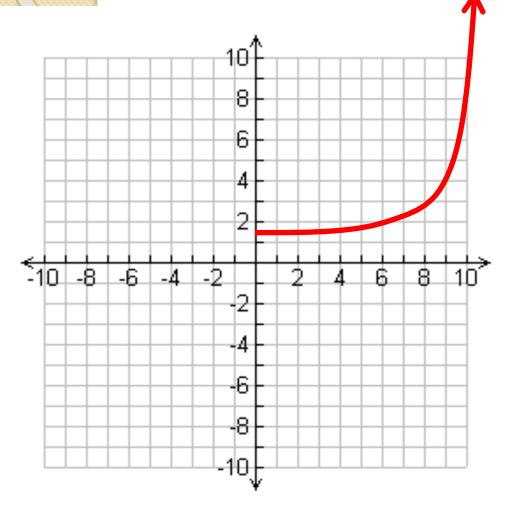
Increasing/decreasing?

Increasing, then decreasing, then increasing, then decreasing, etc.

X-intercept?


 -2π , $-\pi$, 0, π , 2π

Y-intercept?


0

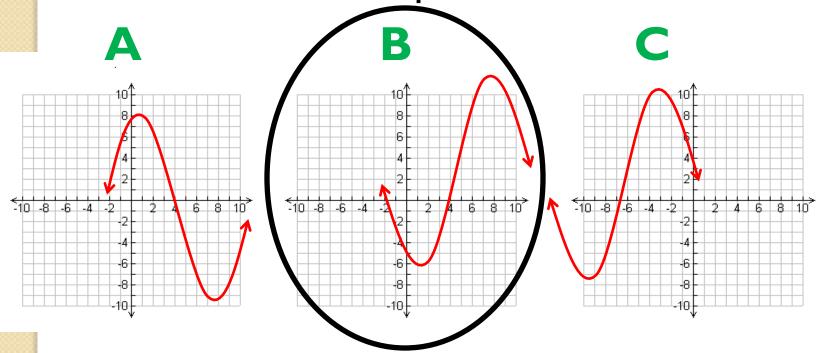
Describe the slope.

The slope is not constant.

Key features?

Increasing/decreasing?
Always increasing

X-intercept?
None


Y-intercept?

About 1.5
Describe the slope.

The slope is not constant. It starts not very steep, then gets steeper and steeper.

Choose the graph that is:

- Decreasing, then increasing, then decreasing
- Has an x-intercept of 4

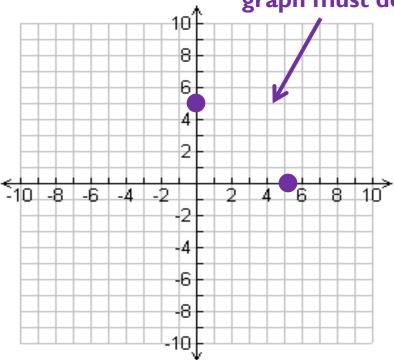
Draw a graph with the following characteristics:

x and y-intercepts are <u>both</u> zero

Always decreasing

Slope doesn't change

Draw a graph with the following characteristics:


Always increasing

The slope changes

IS this possible?

 Draw a graph that is increasing, where the x-and y-intercept are both 5.

To connect these two points, the graph must decrease!

IMPOSSIBLE

- A) A graph that is increasing only, which has an x-intercept of -4 and a y-intercept of 6.
- B) A graph that is increasing, then decreasing, has x-intercepts of 5 and -5, and a y-intercept of -9. IMPOSSIBLE
- C) A graph that is increasing, then decreasing, then increasing again, that has x-intercepts of -8, 2, and 7, and a y-intercept of 4.
- D) A graph that is decreasing, then increasing, that does not have an x-intercept.

All are possible except (B)

HOMEWORK

Create your own functions WS