Warmup $10 /\left(8 \div \frac{1}{2}\right)$

FOR EACH: Find the constant rate of change. Also, find the "original amount" if there is one.
1)

Minutes	Sentences
$\mathbf{6}$	$\mathbf{9 0}$
9	105
12	120
15	135

Rate of change
$=5$ sentences per minute
Original amount $=60$ sentences

2$)$	Age	Weight (lbs)
7	28	
	8	32
	9	36
11	44	

Rate of change
$=4$ pounds per year
Original height $=0$ in

3)	Age	Height (in)
	3	4.5
4	6	
	5	7.5
	6	9

Rate of change
$=1.5$ inches per year
Original height $=0$ in

Minutes	Sentences	Age	Weight (lbs)	Age	Height (in)
6	90	7	28	3	4.5
9	105	8	32	4	6
12	120	9	36	5	7.5
15	135	11	44	6	9
$y=5 x+60$		$y=4 x$		$y=1.5 x$	

Back to your guided notes from yesterday!!!

Proportional Relationships

- A proportional relationship is a special kind of linear relationship.
- It's proportional when it is linear AND the original value (y intercept) is 0 !
- Proportional: $y=10 x$ (no b!!!)
- (Proportional relationships = JUST MULTIPLYING)

Comparing:

- $y=m x+b$

If you plug in "0" for x, you will get " b " as your y-value.
(I had \$100, and I earned \$12 more per hour)
$\cdot y=m x$
If you plug in " 0 " for x , you will get zero!!!
(I had no money, and I earned $\$ 12$ per hour)

NOT
 PROPORTIONAL!!!

- Proportional relationships are a SPECIAL TYPE of linear. It is impossible to be proportional but not linear.

Find the constant rate of change. Also, find the "original amount" if there is one.

Weeks	Books Read
10	11
20	22
30	33
40	44

Rate of change $=1.1$ books per week
(Jim Kwik says this is about how many books CEOs read)

Original amount $=0$ books

$$
y=1.1 x
$$

Proportional!

Find the constant rate of change. Also, find the "original amount" if there is one.

Years	Weight (lbs)
6	31
10	47
14	63
18	79

Rate of change $=4 \mathrm{lbs} /$ year
Original weight $=7 \mathrm{lbs}$

$$
y=4 x+7
$$

Linear but not proportional

Find the constant rate of change. Also, find the "original amount" if there is one.

Minutes	Meigs Moolah signed	Rate of change $=12$ MM per minute
2	24	Original amount $=0$
5	60	
7	84	$\mathrm{y}=12 \mathrm{x}$
8	96	Proportional!

Find the constant rate of change. Also, find

 the "original amount" if there is one.| Years | Height |
| :---: | :---: |
| 2 | $\mathbf{2}^{\prime} 10^{\prime \prime}$ |
| 4 | $3^{\prime} 4^{\prime \prime}$ |
| 7 | $3^{\prime} 10^{\prime \prime}$ |
| 11 | $4^{\prime} 6^{\prime \prime}$ |

Not a constant rate of change!!!
2 to 4: 3 inches per year
4 to 7: 2 inches per year
Not possible to write $\mathrm{a} y=\mathrm{mx}+\mathrm{b}$ equation.

Find the constant rate of change. Also, find the "original amount" if there is one.

Minutes	Problems left	Rate of change $=-3$ prolblems per minute
$\mathbf{3}$	74	Original amount $=83$
5	68	
7	62	$y=-3 x+83$ OR $y=83-3 x$
8	59	

Find the constant rate of change. Also, find

 the "original amount" if there is one.| x | y | Rate of change $=3 / 2$ or 1.5 |
| :---: | :---: | :--- |
| 4 | 2 | |
| $\mathbf{6}$ | $\mathbf{5}$ | Original amount $=-4$ |
| 8 | 8 | |
| $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathrm{y}=1.5 \mathrm{x}-4$ OR $\mathrm{y}=3 / 2 \mathrm{x}-4$ |

HOMEWORK (Due tomorrow)

- Worksheet: Writing Equations from a Table

