Warmup 2/ (# of touchdowns the Chiefs scored on Sunday) Created by Mr. Lischwe

Warmup – Compare Homework answers with your table!!!

Worksheet Answers

- I.a = 60, b = 120, c = 120
- ▶ 2. a = 90, b = 90, c = 50
- \rightarrow 3. a = 77, b = 52, c = 77, d = 51
- ▶ 4. a = 60, b = 120, c = 120, d= 115, e = 65,
 f = 115, g = 125, h = 55, l = 125
- \blacktriangleright 5. a = 90, b = 163, c = 17, d = 110, e = 70
- 6. This is a linear pair, so the measures should add up to 180° . But 129 + 41 = 170.

Given: $m\angle AFB = m\angle EFD = 50^{\circ}$

Points B, F, D and points E, F, C are collinear.

- Determine whether each pair of angles is a pair of vertical angles, a linear pair of angles, or neither. Select the correct answer for each lettered part.
 - A. ∠BFC and ∠DFE
 - B. ∠BFA and ∠DFE
 - C. ∠BFC and ∠CFD
 - **D.** $\angle AFE$ and $\angle AFC$
 - E. ∠BFE and ∠CFD
 - F. ∠AFE and ∠BFC

- Vertical
-) Vertical
- O Vertical
- O Vertical
- Vertical
- O Vertical

-) Linear Pair
- Linear Pair

- Neither
- Neither
- Neither
- Neither
- O Neither
- Neither

Find m∠AFE.

$$m\angle AFB + m\angle AFE + m\angle EFD = 180^{\circ}$$

 $50^{\circ} + m\angle AFE + 50^{\circ} = 180^{\circ}$
 $m\angle AFE = 80^{\circ}$

Find m∠DFC.

$$m\angle\textit{EFB} = m\angle\textit{AFB} + m\angle\textit{AFE} = 80^\circ + 50^\circ = 130^\circ$$

 $m\angle\textit{DFC} = m\angle\textit{EFB}$, so $m\angle\textit{DFC} = 130^\circ$

Find m∠BFC.

$$m\angle BFC = m\angle EFD = 50^{\circ}$$

5. Represent Real-World Problems A sprinkler swings back and forth between A and B in such a way that ∠1 ≅ ∠2, ∠1 and ∠3 are complementary, and ∠2 and ∠4 are complementary. If m∠1 = 47.5°, find m∠2, m∠3, and m∠4.

$$\angle$$
1 \cong \angle 2, so m \angle 2 = 47.5°

$$\angle$$
1 and \angle 3 are complementary, so m \angle 3 = 90 - 47.5 = 42.5°

$$\angle$$
2 and \angle 4 are complementary, so m \angle 4 = 90 - 47.5 = 42.5°

If an angle is acute, then the measure of its complement must be greater than the measure of its supplement.

False. The measure of an acute angle is less than 90°, so the measure of its complement will be less than 90° and the measure of its supplement will be greater than 90°. So, the measure of the supplement will be greater than the measure of the complement.

A pair of vertical angles may also form a linear pair.

False. Vertical angles do not share a common side.

8. If two angles are supplementary and congruent, the measure of each angle is 90°.

True

9. If a ray divides an angle into two complementary angles, then the original angle is a right angle.

True

Summary: Name an example of each of the following:

- An acute angle
- An obtuse angle
- A right angle
- A straight angle
- A pair of adjacent angles
- A pair of vertical angles
- ▶ A pair of complementary angles
- ▶ A pair of supplementary angles
- A pair of congruent angles

TABLE OF CONTENTS: 2ND SEMESTER

Geometry Basics	(No page, see foldable!)
Midpoint & Distance Formulas	p. 1
Reflections (Guided)	p. 2
Rotations (Guided)	p. 3
Symmetry Practice	p. 4
Types of Angles (Guided)	p. 5
Angles formed by Parallel Lines	p. 6

Angles formed by Parallel Lines

Objectives:

- ▶ Given one angle measure, find ALL angles formed by 2 parallel lines
- Identify special angle pairs
- Use special angle pair rules to find angle measures

► TRANSVERSAL: A line that intersects two coplanar lines.

Corresponding Angles

Two angles that are in the same "position" but on different lines are called **corresponding**.

New terminology

- Which angles would you say are interior angles? 3, 4, 56
- Which angles would you say are exterior angles? 1, 2,78

New terminology

- Interior: between the lines
- Exterior: outside the lines
- Alternate: opposite sides of the transversal
- Same-side: same side of the transversal

IN YOUR NOTES!

- ▶ Alternate Interior: ∠4 and ∠5, ∠3 and ∠6
- ▶ Same-side Interior: $\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$
- ▶ Alternate Exterior: ∠I and ∠8, ∠2 and ∠7
- ► Corresponding: ∠I and ∠5, ∠2 and ∠6, ∠3 and ∠7, ∠4 and ∠8

Corresponding Angles

If the lines are parallel, corresponding angles will be congruent!!!

DISCUSS WITH YOUR GROUP:

- congruent to each other?
 - Discuss in groups:
 - Which angles do you think are congruent?
 - Why do you think they are congruent?
 - Does your group all agree or not?

- Same Side Interior Angles Postulate:
 - If two parallel lines are cut by a transversal, then the pairs of same-side interior angles are supplementary
- Corresponding Angles Theorem
 - If two parallel lines are cut by a transversal, then the pairs of corresponding angles have the same measure

Alternate Interior Angles Theorem:

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles have the same measure

Alternate Exterior Angles Theorem:

If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles have the same measure

IN YOUR BINDER

▶ IF THE LINES ARE PARALLEL:

- Alternate Interior: congruent
- Alternate Exterior: congruent
- Same-side Interior: supplementary
- P Corresponding: congruent

Whiteboard Practice

You can always refer back to these slides on my website

One angle measure is given. Find the measures of ALL other angles.

Alternate Exterior

Same-Side Interior

Atternate Interior

Same-side interior

Corresponding

WHY ARE THERE TWO ARROWS???

What is **ALWAYS** true about alternate interior angles when two parallel lines are cut by a transversal?

They are congruent

What is ALWAYS true about same-side interior angles when two parallel lines are cut by a transversal?

They are supplementary

What is ALWAYS true about alternate exterior angles when two parallel lines are cut by a transversal?

They are congruent

If the measure of angle I is 47 degrees, what is the measure of angle 2? **HOW DO YOU KNOW?**

With algebra...

Find the value of x.

Alt. Ext: congruent

$$2x + 50 = 4x - 10$$

 $x = 30$

With algebra...

Find the measure of both angles.

Homework

Worksheet