Created by Katie Wagner
Warmup 2/(2 ${ }^{3}$)

1. Draw a segment and a perpendicular bisector of that segment.
2. What is the slope? What is the y-intercept:
a. $y=-2 x+3$
b. $2 x+4 y=10$
c. for the line that goes through $(0,5)$ and $(2,9)$

Quiz Friday

Types of Angles (Monday)
Parallel Lines (Tuesday)
Converse of Theorems (Today)
Perpendicular Bisector Theorem (Today)
Equations of Parallel and Perpendicular Lines (Thursday)

Objective
Some proofs and Converse of Theorems

Check Homework

PROVING the angle sum of a triangle with parallel lines...

This proof will be on the test!

What is the converse of a theorem?

A statement formed by interchanging what is given in a theorem and what is to be proved

Converse

Switch the If and Then Statements!

A statement and its converse
"If two angles are a linear pair, then they are supplementary."

The converse:
"If two angles are supplementary, then they are a linear pair."

Can you come up with another if-then Would the converse be true?
-If two angles are vertical, then they are congruent.
-"If two angles are congruent, then they are vertical" would be false?

Can you come up with one where the converse is also true?
-If an angle is acute, then its supplement is obtuse.
-"If an angle's supplement is obtuse, then the angle is acute."
-If you add two even numbers, then their sum will be even.
""If the sum of two numbers is even, then the two numbers are even."

Write the converse of each statement.

1. If $a=b$, then $a+c=b+c$.

$$
\text { If } a+c=b+c \text {, then } a=b
$$

2. If $\mathrm{m} \angle A+\mathrm{m} \angle B=90^{\circ}$, then $\angle A$ and $\angle B$ are complementary.

If $\angle A$ and $\angle B$ are complementary, then $\mathrm{m} \angle A$ $+\mathrm{m} \angle B=90^{\circ}$.
3. If $A B+B C=A C$, then A, B, and C are collinear.

If A, B, and C are collinear, then $A B+B C=A C$.

Corresponding Angles Postulate

If two parallel lines are cut by a
transversal, then the pairs of
corresponding angles have the same measure
Converse of the Corresponding Angles Postulate
If two lines are cut by a transversal so that any pair of corresponding angles are congruent, then the lines are parallel.

Converse of the Alternate Interior Angles Theorem
If two lines are cut by a transversal so that any pair of alternate interior angles are congruent, then the lines are parallel.

Converse of the Alternate Exterior Angles Theorem
If two lines are cut by a transversal so that any pair of alternate exterior angles are congruent, then the lines are parallel.

Which lines are parallel if $<9 \cong<13$?

Is $\boldsymbol{\ell} \| m$? Explain using a converse.

Is $\boldsymbol{\ell} \| m$? Explain using a converse.

$$
\mathrm{m} \angle 4=4(13)+25=77
$$

$$
\mathrm{m} \angle 5=5(13)+12=77
$$

$$
\mathrm{m} \angle 4=\mathrm{m} \angle 5
$$

$$
\angle 4 \cong \angle 5
$$

$$
e \| m
$$

A carpenter is creating a woodwork pattern and wants two long pieces to be parallel. $m \angle 1=(8 x+2)^{\circ}$ and $m \angle 2=(2 x+10)^{\circ}$. If $x=15$, is A parallel to B ?

Piece A
Piece B

12

Find the value of x so that the two lines are parallel.

I need a volunteer!

Draw a point that is equidistant (equal distance) from A and B

What if...? Suppose the
corresponding angles on the
opposite side of the boat measure
$(4 y-2)^{\circ}$ and $(3 y+6)^{\circ}$, where
$y=8$. Are the oars parallel?

The angles are congruent, so the oars are || by the Conv. of the Corr. $\angle \mathrm{s}$ Post.

What is a perpendicular bisector???

How can we prove that $\overline{A C} \cong \overline{B C}$?
Pythagorean Theorem!

Perpendicular Bisector Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment

Use the diagram shown. $\overline{B D}$ is the perpendicular bisector of $\overline{A C}$.

4. Suppose $E D=16 \mathrm{~cm}$ and $D A=20 \mathrm{~cm}$. Find $D C$.

Because $\overline{B D}$ is the perpendicular bisector of $\overline{A C}$, then DA = DC and $D C=20 \mathrm{~cm}$
5. Suppose $E C=15 \mathrm{~cm}$ and $B A=25 \mathrm{~cm}$. Find $B C$.

Because $\overline{B D}$ is the perpendicular bisector of $\overline{A C}$, then $B A=B C$ and $B C=25 \mathrm{~cm}$.

Given: $\overrightarrow{\boldsymbol{A C}}$ is the perpendicular bisector of $\overline{\mathbf{G H}}$.

$$
G H=
$$

$$
\mathrm{CH}=
$$

\qquad

Find each measure. TU
$T U=U V$
$3 x+9=7 x-17$
$9=4 x-17$
$26=4 x$
$6.5=x$

So $T U=3(6.5)+9=28.5$.

Given: $\overline{\boldsymbol{C D}}$ is the perpendicular bisector of $\overline{\boldsymbol{P R}}$.

$C R=$ \qquad
$P Q=$ \qquad

Converse of the Perpendicular Bisector Theorem

If a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment

Find the measure.
BC

Since $A B=A C$ and $\ell \perp \overline{B C}$, is the
perpendicular bisector of $\overline{B C}$ by
the Converse of the Perpendicular Bisector Theorem.

$$
\begin{aligned}
& B C=2 C D \\
& B C=2(12)=24
\end{aligned}
$$

Homework

Graphing Parallel and Perpendicular Lines "Preview"

