Created by Mr. Lischwe
 Warm Up $1 /($ Reciprocal of $1 / 11$)

$\overrightarrow{K M}$ bisects $\angle J K L$

$\mathbf{m} \angle J K M=30^{\circ}$

Remember the difference...
$\overline{A B}=$ the name of the segment
$\square A B=$ the length of the segment
$\square \angle D E F=$ the name of the angle
$\square m \angle D E F=$ the measure of the angle

Postulate	
(see back)	a statement that is ackeped without proof

Segment Addition Postulate

Let A, B, and C be collinear points. If B is between A and C, then $A B+B C=A C$

Angle Addition Postulate

pg. 792

If S is in the interior of $\angle P Q R$, then $\mathrm{m} \angle P Q R=\mathrm{m} \angle P Q S+\mathrm{m} \angle S Q R$.

$m \angle X W Z=121^{\circ}$ and $m \angle X W Y=59^{\circ}$. Find $\mathbf{m} \angle Y W Z$.

$\begin{array}{ll}\mathrm{m} \angle Y W Z=\mathrm{m} \angle X W Z-\mathrm{m} \angle X W Y & \angle \text { Add. Post. } \\ \mathrm{m} \angle Y W Z=121^{\circ}-59^{\circ} & \text { Substitute the given values. } \\ \mathrm{m} \angle Y W Z=62^{\circ} & \text { Subtract. } \\ \end{array}$

Midpoint \& Distance on a Coordinate Plane Objective:
-Find the exact midpoint of a segment on a coordinate plane
-Find the exact distance between two points on a coordinate plane

Midpoint Exploration

Midpoint Formula

Midpoint of (x_{1}, y_{1}) and (x_{2}, y_{2}) is:

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

DON'T JUST MEMORIZE THE FORMULA. Understand what it means. You are finding the values halfway between the x 's and halfway between the y 's!!!

Answers to $5-8$
5) $(7.5,7)$
6) $(-6,1)$
7) $(1 / 2,-9)$
8) $(-8,2)$

Distance

Can we find the distance (aka the length) of a line?

Can we find the distance (aka the length) of a line
segment?

Distance Formula

How far apart are these two points???

Quick Lesson: Pythagorean Theorem

If \mathbf{a} and \mathbf{b} are the short sides (legs) of a right triangle, and c is the long side (hypotenuse), then

$$
a^{2}+b^{2}=c^{2}
$$

Find the missing side.

Find the missing side

How can we use the Pythagorean Theorem help us with this problem?

How far apart are these two points?

Find the distance between the points

Find the distance between the points

Homework

Worksheet

