Created by Mr. Lischwe

$$
\text { Warmup } 1 /\left(8^{5} \cdot \mathbf{8}^{-4}\right)+\left(\frac{3^{10}}{3^{8}}\right)
$$

Decide if each is a function. Explain why or why not.

$3)$
$N o$

*****EVERYONE NEEDS A

 WHITEBOARD, MARKER,ERASER!!!****

PLEASE FIND YOUR

 "ZERO AND NEGATIVE EXPONENTS" PAGE OF NOTES!!!
VMhet abouf:

$=1 \div \frac{1}{x^{5}}$
$=1 \cdot \frac{x^{5}}{1}$
$=x^{5}$

How would you rewrite this?

$\frac{3 a^{4} b^{5} c_{5}^{6} d^{7}}{e^{-8}}$
$3 a^{4} b^{5} c^{6} d^{7} e^{8}$
» If the negative exponent is already in the denominator, it moves back up to the numerator.

$$
\frac{1}{x^{-5}} \rightarrow x^{5}
$$

$\frac{\frac{\left(e^{0} w^{-1} w^{1}-2 h^{3} p^{-5} t^{6} s^{7}\right.}{a^{-4}}}{\frac{2}{2}}$

Simplifiy:

$$
\begin{gathered}
>\frac{-3 x^{2} y^{-4}}{z} \rightarrow \frac{-3 x^{2}}{y^{4} z} \\
\begin{array}{l}
\downarrow \\
\frac{x^{2}}{-3 y^{4} z}
\end{array}
\end{gathered}
$$

» Only negative exponents move to the denominator. Not negative coefficients.

WWhet about:

$$
\frac{m^{4}}{m^{-2}-2} \quad \begin{aligned}
& \frac{\text { Shortcut }}{m^{4}} \\
& \\
& \frac{m^{-2}}{m^{4}} \\
& =m^{4-(-2)} \\
&
\end{aligned}
$$

Moving Neg. Exponent First $\frac{m^{4}}{m^{-2}}$
$\frac{m^{4} \cdot m^{2}}{1}$
$=m^{6}$

$$
\begin{aligned}
& \frac{c^{2} d^{5}}{c^{5} d^{2}}=\frac{\alpha \cdot \psi \cdot d \cdot d \cdot d \cdot d \cdot x}{q \cdot c \cdot c \cdot c \cdot d \cdot d x} \\
& \\
& =\frac{c^{-3} d^{3}}{c^{3}} \\
& \\
& =
\end{aligned}
$$

$\frac{q^{3} q^{-4}}{q^{2}}$

$$
=\frac{q^{3}}{q^{2} \cdot q^{4}}=\frac{q^{3}}{q^{6}}=\frac{1}{q^{3}}
$$

On your whiteboard.>

$$
\begin{array}{lc}
\text { 1. } 3^{4} & 81 \\
\text { 2. } & (-4)^{4} \\
\text { 3. } 2^{-3} & \frac{1}{8} \\
\text { 4. } 7^{0} & 1 \\
\text { 5. } & -12^{2} \\
-144
\end{array}
$$

Activity: Exponent Expression Sort

» Your group will get a bag with 21 expressions in it.
» These 21 expressions will split into 6 groups of equivalent expressions.
") For example, $x^{4} \cdot x$ and $\frac{x^{9}}{x^{4}}$ would go in the same group. However, $\left(x^{3}\right)^{2}$ would go in a different group.
» One person will keep track of which expressions go where on the handout. However, ALL group members will participate verbally!
» EARLY FINISHER 1: Your group will get 9 more expressions. Some of these will form a $7^{\text {th }}$ group, and others will go into the previous groups.
» EARLY FINISHER 2: Come up with your own NEW expressions that would go in the groups. Be as creative as you want.
» On Tuesday, we are doing a big review activity called "Levels"
» I will need 3 or 4 "student checkers." Instead of doing the activity, they will be checking everyone else's work.
» These should be students who understand these problems very well and would be able to help students who are stuck.
» What's the catch???
» If you want to be a checker, you must do the activity as homework this weekend.
» If you are interested in being a checker, come to my desk.

Homework

Shortcuts vs. Expanding Worksheet

