Created by Mr. Lischwe

Warmup $1 /\left(\frac{22 x^{3}}{x^{3}}\right)$
Find an explicit rule for this sequence: 1,9,17,25...

NEED:

- Ruler
- Protractor
- One sheet of Patty Paper

Find the slope between the following points:
$(-5,5)$, and $(1,10)$

Write the equation of the line in slope
intercept form.

Reflecting across the line $y=-x$

Chart on pg. 846

Rules for Reflections on a Coordinate Plane

Reflection across the x-axis	$(x, y) \rightarrow(x,-y)$
Reflection across the y-axis	$(x, y) \rightarrow(-x, y)$
Reflection across the line $y=x$	$(x, y) \rightarrow(y, x)$
Reflection across the line $y=-x$	$(x, y) \rightarrow(-y,-x)$

Finding the line of reflection

Who thinks they can draw it???

- To find the line of reflection, find the midpoint of each connecting line. Then connect these midpoints.
- You can always use the midpoint formula to find the midpoints (like in p. 847 Example A), but a lot of times you will be able to find the midpoint by counting squares.

midpoints: $\overline{A A^{\prime}}:\left(\frac{-2+4}{2}, \frac{4+(-2)}{2}\right)=(1,1)$;
$\overline{B B^{\prime}}:\left(\frac{1+3}{2}, \frac{3+1}{2}\right)=(2,2)$;
$\overline{C C^{\prime}}:\left(\frac{-3+(-1)}{2}, \frac{-1+(-3)}{2}\right)=(-2,-2)$

midpoints: $\overline{A A^{\prime}}:\left(\frac{4+6}{2}, \frac{7+3}{2}\right)=(5,5)$;
$\overline{B B^{\prime}}:\left(\frac{3+(-1)}{2}, \frac{-1+7}{2}\right)=(1,3)$;
$\overline{C C^{\prime}}:\left(\frac{2+4}{2}, \frac{6+2}{2}\right)=(3,4)$

Please do 13 - 16 on the homework!!!

Rigid Motions

- Translations (last week)
- Reflections (Yesterday)
- Rotations (Today and tomorrow)
- Quiz Friday

Check Homework

$$
\text { pg. } 851(1-16)
$$

3.

4.

5.

7.

6.

8.

9. $P(-2,3), Q(4,3), R(-1,0), S(-4,1)$ ix-axis

$$
\begin{aligned}
& P^{\prime}(-2,-3) \\
& Q^{\prime}(4,-3), \\
& R^{\prime}(-1,0), \\
& S^{\prime}(-4,-1)
\end{aligned}
$$

11. $/(-1,2), K(2,4), L(4,-1) ; y=-x$

12. $A(-3,-3), B(1,3), C(3,-1)$ y-axis

$$
\begin{aligned}
& A^{\prime}(3,-3) \\
& B^{\prime}(-1,3) \\
& C^{\prime}(-3,-1)
\end{aligned}
$$

12. $D(-1,1), E(3,2), F(4,-1), G(-1,-3) ; y=x$

$$
\begin{aligned}
& D^{\prime}(1,-1) \\
& E^{\prime}(2,3) \\
& F^{\prime}(-1,4), \\
& G^{\prime}(-3,-1)
\end{aligned}
$$

13.

midpoint of $\overline{A A}$ is $(-3,-1)$. midpoint of $\overline{B B^{r}}$ is [$-11_{n} 1$]. midpoint of $\overline{C C}$ is $(0,2)$.
14.

midpoint of $\overline{A A^{\prime}}$ is $(-3,1)$. midpoint of $\overline{B E}$ is $(-1,0)$. midpoint of $\overline{\mathrm{CC}}$ is $(1,-1)$.

TABLE OF CONTENTS: $\mathbf{2}^{\text {ND }}$ SEMESTER

Geometry Basics
Midpoint \& Distance Formulas
Reflections (Guided)
Rotations (Guided)
(No page, see foldable!)
p. 1
p. 2
p. 3

Finding the angle of rotation

- Estimate: by what angle do you think rectangle ABCD was rotated?
- Was it rotated clockwise or counterclockwise?

80°

Finding the angle of rotation

- Estimate: By what angle do you think the shape was rotated?
- Which direction was it rotated?

Now you try to draw one!

Counterclockwise rotation of 40° around point P

What about rotations in the coordinate plane?

Challenge: ROTATE the shape 90° clockwise around the origin.

Coordinates:
A $(-5,4)$
B $(-5,1)$
C $(-4,1)$

Challenge: ROTATE the shape 90° clockwise around the origin.

Coordinates:
A $(-5,4)$
B $(-5,1)$
C $(-4,1)$

See Notes Sheet

Homework
-p. 865 (5-10)
YOU WILL NEED A PROTRACTOR for 9 and 10!!!

