

Prisms

FORMULAS REVIEW
Prisms have TWO bases that are connected by flat sides all around.

$$
\begin{array}{ll}
\text { Any Prism: } & \text { Volume }=(\text { Area of base }) \times \text { height } \\
\text { - Rectangular Prism: } & V=(l w) \cdot h \\
\text { - Triangular Prism: } & V=\left(\frac{1}{2} b h_{1}\right) \cdot h_{2} \\
\text { - Cylinder } & V=\left(\pi r^{2}\right) \cdot h
\end{array}
$$

Pyramids/Cones

Pyramids \& Cones have ONE base, and come to a point at the top.
3 pyramids $=1$ prism. 3 cones $=1$ cylinder.

Cones \& Pyramids

Any Pyramid: Volume $=\frac{1}{3} \cdot($ Area of base $) \cdot$ height

- Rectangular/Square Pyramid: $\quad V=\frac{1}{3} \cdot(l w) \cdot h$
- Cone

$$
V=\frac{1}{3} \cdot\left(\pi r^{2}\right) \cdot h
$$

Volume of a sphere

The volume of a sphere is $2 / 3$ of the cylinder it

Spheres

Spheres:

- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot h\right)$
- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot 2 r\right)$
- $V($ sphere $)=\frac{4}{3} \pi r^{3}$

○ $V=\frac{4}{3} \pi r^{3}$

All 3-dimensionaliformulas
 have three variables!!!

- Rectangular Prism:
$\boldsymbol{V}=\boldsymbol{l} \cdot \boldsymbol{w} \cdot \boldsymbol{h}$
- Cylinder: $\quad V=\pi r^{2} h$
$\boldsymbol{V}=\boldsymbol{\pi} \cdot \boldsymbol{r} \cdot \boldsymbol{r} \cdot \boldsymbol{h}$
- Cone:
$V=\frac{1}{3} \cdot \boldsymbol{\pi} \cdot \boldsymbol{r} \cdot \boldsymbol{r} \cdot \boldsymbol{h}$
- Sphere: $\quad V=\frac{4}{3} \pi r^{3}$
$\boldsymbol{V}=\frac{4}{3} \cdot \boldsymbol{\pi} \cdot \boldsymbol{r} \cdot \boldsymbol{r} \cdot \boldsymbol{r}$

$$
V \approx 339
$$

All 2-dimensional formulas have
three variables!!
$\begin{array}{rlrl} & \text { - Rectangle: } & A & =\boldsymbol{l} \cdot \boldsymbol{w} \\ \text { - Triangle: } & A & =\frac{1}{2} \cdot \boldsymbol{b} \cdot \boldsymbol{h} \\ \text { - Circle: } & A=\pi r^{2} & A & =\boldsymbol{\pi} \cdot \boldsymbol{r} \cdot \boldsymbol{r}\end{array}$
If the snow completely filled the main part of the birdhouse, what would be the approximate volume, in cubic inches, of the snow? (Round your answer to the nearest whole number.)
A 226

- 283
c 339
- 1357

$$
V=\pi \cdot 3^{2} \cdot 12
$$

A truck that carries gasoline is shown.

How much gasoline can the cylindrical tank hold?
(A) $212 \pi \mathrm{ft}^{3}$
(B) $424 \pi \mathrm{ft}^{3}$
(C) $848 \pi \mathrm{ft}^{3}$
$V=\pi \cdot 4^{2} \cdot 53$
(D $3392 \pi \mathrm{ft}^{3}$
$V=848 \pi$
(Those are all pi symbols!!!)
Find the area of the shaded region.

> Area $=$ big circle - small circle
> Diameter of big circle $=14$, radius $=7$
> Diameter of small circle $=8$, radius $=4$
> $A=\pi(7)^{2}-\pi(4)^{2}$
> $A=49 \pi-16 \pi$
> $A=33 \pi$ (exact)
> $A \approx 103.7 \mathrm{in}^{2}$ (rounded)

Working backwards...

$$
\begin{aligned}
& \text { Find the width of the prism. } \\
& \qquad \begin{array}{r}
V=l w h \\
288 \\
V=288 \mathrm{ft}^{3} \\
\text { Multiply } 12 \& 6 \text { first, then divide } \\
\text { OR }
\end{array} \\
& 6 \mathrm{ft} \quad \begin{array}{l}
\text { Divide each one separately } \\
288 \\
28
\end{array} \\
& \hline \mathbf{1 8}=\boldsymbol{h}
\end{aligned}
$$

Working backwards...
Find the height of the cylinder.

$$
\begin{aligned}
V & =\pi r^{2} \cdot h \\
\frac{882 \nmid}{7} & =\frac{\hbar}{4} \cdot 7^{2} \cdot h \\
882 & =7^{2} \cdot h \\
882 & =49 \cdot h \\
18 & =h
\end{aligned}
$$

The figure shows a can of three tennis balls. The can is just large enough so that the tennis balls will fit inside with the lid on. The diameter of each tennis ball is 2.5 in .

1. Find the total volume of the can.
2. Find the volume of empty space inside the can.

$$
\mathrm{Can}=\pi \cdot 1.25^{2} \cdot 7.5
$$ Can ≈ 36.8 in 3

$$
\begin{array}{ll}
\text { 1. } 36.8 \mathrm{in}^{3} & \text { Each ball }=\frac{4}{3} \pi \cdot 1.25^{3} \\
\text { 2. } 12.3 \mathrm{in}^{3} & \text { Each ball } \approx 8.18 \mathrm{in}^{3}
\end{array}
$$

Homework

- Volume Worksheet

