\qquad
Exponential Multiple Representations

Average Rate of Change

- Linear functions have a constant rate of change called the slope of the line. We only find slope for linear functions. The slope of a line does not change no matter where you find it on the line.

What do we do for other types of functions?
Find the average rate of change in a specific interval. (It will change for each different interval!)
The average rate of change between any two points ($x_{1}, f\left(x_{1}\right)$) and ($\left.x_{2}, f\left(x_{2}\right)\right)$ is the change of y over the change in x at the two endpoints of the interval. Average rate of change describes on average how a function is changing over an interval.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { becomes } \quad \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Find the slope from an equation, a table, and a graph.

Equation$y=5 x+10$		Tab				
	X	$f(x)$				
	-2	6				
	0	12				
	2	18				
	4	24				
	6	30				

Find the average rate of change on an interval from an equation, a table, and a graph.

Equation	Table	
	X	$f(x)$
$f(x)=3(2)^{x}$	0	1
	1	3
average rate of change on	2	9
interval $0 \leq x \leq 2$	3	27
	4	81

Find the average rate of change on the interval $0 \leq x \leq 2$

Find the average rate of change on the interval $2 \leq x \leq 4$

Find the average rate of change on the interval $0 \leq x \leq 3$

