Exponential Multiple Representations

Equation	Table	Graph
	x f(x)	
$f(x) = -4(2)^x$	-2	
	-1	
	0	
	1	
	2	
Equation	Table	Graph
	x f(x)	
	-2	18
		16
	-1	
	0	12
	2	8
		4
		-6 -4 -2 2 4 6 x
Equation	Table	Graph
	x f(x)	
	-2 2	18
	3	16
	-1 2	
	0 6	
		12
	1 18	10
	2 54	8
		\leftarrow -6 -4 -2 2 4 6 x
	•	

Average Rate of Change

• Linear functions have a constant rate of change called the slope of the line. We only find slope for linear functions. The slope of a line does not change no matter where you find it on the line.

What do we do for other types of functions?

Find the average rate of change in a specific interval. (It will change for each different interval!)

The average rate of change between any two points $(x_1, f(x_1))$ and $(x_2, f(x_2))$ is the change of y over the change in x at the **two endpoints of the interval.** Average rate of change describes on average how a function is changing over an interval. $m = \frac{y_2 - y_1}{becomes} = \frac{f(x_2) - f(x_1)}{becomes}$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 becomes $\frac{y_1 - x_2 - y_1}{x_2 - x_1}$

Find the **slope** from an equation, a table, and a graph.

Equation		Table	Graph
	Х	f(x)	f(x)
y = 5x + 10	-2	6	6 (0.5)
	0	12	1 5 (0, 5)
	2	18	3 (3, 3)
	4	24	2 (6, 1)
	6	30	
			-4 -3 -2 -1 0 1 2 3 4 5 6 7
			-2

Find the **average rate of change on an interval** from an equation, a table, and a graph.

Equation	Table	Graph
$f(x) = 3(2)^x$	x f(x) 0 1 1 3	$y f(x) = 2^x$
Find the average rate of change on the interval $0 \le x \le 2$	2 9 3 27 4 81 Find the average rate of change on	16 14 12 10 8
Find the average rate of change on the interval $3 \le x \le 5$ Why were they not the same?	Find the average rate of change on the interval $0 \le x \le 2$ Find the average rate of change on the interval $2 \le x \le 4$	Find the average rate of change on the interval $0 \le x \le 3$