Created by Mr. Lischwe
 Warmup 1/((-2) $\left.{ }^{4}-(-2)^{2}\right)$

1) Make up your own exponent problem with an answer of a^{6}.

FYI:

- If you are still missing your Midterm Corrections/Extension assignment, you will be working on it during lunch tomorrow.

2) Is $\frac{3^{100}}{3^{99}}$ greater than, less, than, or equal to 3 ? Explain your reasoning.
3) Verify that the problem in the date is correct.

$$
\begin{array}{ll}
\text { 1. } \frac{a^{45}}{a^{22}} & \mathrm{a}^{23} \\
\text { 2. } \frac{6^{5}}{6^{3}} & 6^{2} \\
\text { 3. } \frac{x^{3} y^{5}}{x y^{2}} & \mathrm{x}^{2} \cdot \mathrm{y}^{3} \\
\text { 4. } \frac{12 j^{5}}{3 j^{2}} & \frac{12 \cdot j \cdot j \cdot j \cdot j \cdot j}{3 \cdot j \cdot j} \\
& =4 \mathrm{j}^{3}
\end{array}
$$

Careful...

Helpful Hint

- WHEN IN DOUBT, EXPAND IT OUT!!!

A little harder...

1. $4 a^{2} b^{3} \cdot 7 a \cdot 2 b^{5}$
$=4 \cdot a \cdot a \cdot b \cdot b \cdot b \cdot 7 \cdot a \cdot 2 \cdot b \cdot b \cdot b \cdot b \cdot b$

$$
=56 a^{3} b^{8}
$$

$$
\text { 2. } \frac{6 c^{5} \cdot 3 d^{7}}{9 c d^{4}}
$$

$$
\begin{aligned}
& 9 c d^{4} \\
& =\frac{6 \cdot c \cdot c \cdot c \cdot c \cdot \cdot^{1} \psi \cdot 3 \cdot{ }^{1} \not{ }^{1} \cdot{ }^{1} d^{1} \cdot d^{1} d d \cdot d \cdot d \cdot d}{9 \cdot \phi \cdot d \cdot d \cdot d \cdot \not d}
\end{aligned}
$$

$$
=\frac{18 \cdot c^{4} \cdot d^{3}}{9}=2 c^{4} d^{3}
$$

Table of Contents (2 ${ }^{\text {nd }}$ Semester)

```
p. 1 Exponent Basics (1.2)
```

p. 2 Multiplying and Dividing Powers (1.3)
Power to a Power (1.4)

Super-Crazy Example

Simplify:

$$
\frac{-2 a^{6} \cdot 6 b^{3} \cdot a \cdot 4 b^{5}}{18 b^{4} \cdot a^{5} \cdot 3 b^{2}}
$$

Taking a power to a power

$$
\begin{array}{cc}
\left(\boldsymbol{x}^{3}\right)^{4} & \left(\boldsymbol{a}^{5}\right)^{2} \\
& \left(m^{5} n^{2}\right)^{6} \\
& \left(3 y^{4}\right)^{2} \\
& \left(\frac{b}{c^{3}}\right)^{4}
\end{array}
$$

After you solve these, come up with some rules that you discover about how to take a power to a power.

2 ways to show $\left(a^{5}\right)^{2}$

$\frac{\text { Way } 1}{\left(a^{5}\right)^{2}}$	$\frac{\text { Way } 2}{\left(a^{5}\right)^{2}}$
$=\left(a^{5}\right)\left(a^{5}\right)$	$=(a \cdot a \cdot a \cdot a \cdot a)^{2}$
$=a^{10}$	$=(a \cdot a \cdot a \cdot a \cdot a)(a \cdot a \cdot a \cdot a \cdot a)$
	$=a^{10}$

$\left(a^{5}\right)^{2}$

Taking a Power to a Power

- Keep the base, multiply the exponents

What if there's a coefficient?

$$
\left(3 y^{4}\right)^{2}
$$

Predictions?

$=3 y^{4} \cdot 3 y^{4}$
$=3 \cdot y \cdot y \cdot y \cdot y \cdot 3 \cdot y \cdot y \cdot y \cdot y$
$=9 y^{8}$
What did we learn?
Taking a Power to a Power

- Keep the base, multiply the exponents

The coefficient goes to the power outside the parentheses, just like any normal number.
DON'T MULTIPLY THE COEFFICIENTS TOO. TREAT THEM AS NORMAL NUMBERS!!!

Examples

1. $\left(x^{2}\right)^{5}=\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)=x^{10}$
2. $\left(\boldsymbol{a}^{4} b\right)^{2}=\left(a^{4} b\right) \cdot\left(a^{4} b\right)$
3. $\begin{aligned}\left(2 m^{3}\right)^{4} & =\left(2 m^{3}\right) \cdot\left(2 m^{3}\right) \cdot\left(2 m^{3}\right) \cdot\left(2 m^{3}\right) \\ & =(2 \cdot m \cdot m \cdot m) \cdot(2 \cdot m \cdot m \cdot m) \cdot(2 \cdot m \cdot m \cdot m)\end{aligned}$
4. $\left(\frac{55^{50}}{6 h^{30}}\right)^{2} \quad\left(\frac{5 \wedge_{5}}{6 g^{30}}\right)^{2}$
$=16 m^{12}$
$=\frac{25 g^{100}}{36 h^{60}}$

Find the perimeter and area of the square:

Once again...
-WHEN IN DOUBT, EXPAND IT OUT!!!

EXIT TICKET

Do these on a notecard. You may not get help from me, your classmates, or your notes.

1) $8 x^{4} \cdot 4 x^{8}$
2) $\frac{16 y^{7}}{8 y}$
3) $\left(3 z^{5}\right)^{3}$

Homework (combined with yesterday's)
Textbook p. 35 (2-10 even, 20, 21)

