Created by Mr. Lischwe

$$
\text { Warmup } 1 /\left(\frac{15^{47}}{15^{46}}\right)
$$

1) Make up four different exponent problems that would simplify to x^{30}.
2) Copy the date problem and show work to verify that it is correct.
3) If I take 2^{30} and double it, what do I get? Write your answer as a power.

FYI:

- If you are still missing your Midterm Corrections/Extension assignment by tomorrow, you will be working on it during lunch tomorrow.

Table of Contents ($2^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Multiplying and Dividing Powers (1.3) BACK TO THIS PAGE

Let's review...

- Why is $2^{7} \cdot 2^{3}$ NOT equal to 2^{21} even though this is a multiplication problem?
- Why is $\frac{2^{12}}{2^{4}}$ NOT equal to 2^{3} even though this is a division problem?
- ***If you understand WHY a rule works, you are WAY more likely to remember it better!***

Examples: Dividing

$$
\text { 1. } \frac{a^{45}}{a^{22}}
$$

$$
a^{23}
$$

2. $\frac{6^{5}}{6^{3}}$
6^{2}

$$
x^{2} \cdot y^{3}
$$

3. $\frac{x^{3} y^{5}}{x y^{2}}$
4. $\frac{12 j^{5}}{3 j^{2}}$

$$
\begin{aligned}
& \frac{12 \cdot j \cdot j \cdot j \cdot j \cdot j}{3 \cdot j \cdot j} \\
& =4 j^{3}
\end{aligned}
$$

WHEN YOU HAVE COEFFICIENTS, MULTIPLY OR DIVIDE THEM JUST LIKE NORMAL NUMBERS!!!

Careful...

$7 x^{5}$

$7 x^{3}$

Here the 7's are coefficients. There is 1 of each. The 7's would "divide away."

Here the 7's are the actual base. There are five 7's in the numerator and three 7's in the denominator. There would be two 2's remaining in the denominator.

A little harder...

TIP:

Go step by step. Do the coefficients, then one

1. $4 a^{2} b^{3} \cdot 7 a \cdot 2 b^{5}$ variable, then the other.

$$
=4 \cdot a \cdot a \cdot b \cdot b \cdot b \cdot 7 \cdot a \cdot 2 \cdot b \cdot b \cdot b \cdot b \cdot b
$$

$=56 a^{3} b^{8}$

2. $\frac{6 c^{5} \cdot 3 d^{7}}{9 c d^{4}}$

$$
\begin{array}{r}
9 c d^{4} \\
=\frac{6 \cdot c \cdot c \cdot c \cdot c \cdot{ }^{1} d \cdot 3 \cdot{ }^{1}{ }^{1} d^{1} \cdot \alpha^{1} \cdot \alpha \alpha^{1} \cdot \mu \cdot d \cdot d \cdot d}{9 \cdot q \cdot d \cdot d \cdot d \cdot \not \cdot \mu} \\
=\frac{18 \cdot c^{4} \cdot d^{3}}{9} \quad=2 c^{4} d^{3}
\end{array}
$$

Helpful Hint

WHEN IN DOUBT, EXPAND IT OUT!!!

Super-Crazy Example

Simplify:

$$
\frac{-2 a^{6} \cdot 6 b^{3} \cdot a \cdot 4 b^{5}}{18 b^{4} \cdot a^{5} \cdot 3 b^{2}}
$$

DUE TOMORROW:

- Textbook p. 27 (1-6, 8, 14-18)

Table of Contents ($2^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Multiplying and Dividing Powers (1.3)
p. 3 Power to a Power (1.4)

Power to a Power

Objective:
Simplify expressions like $\left(x^{5}\right)^{3}$

CHALLENGE

- We are going to learn a new exponent rule today.
- Once again, I am not going to tell you the rule right away. I want to see if you can figure it out.
- I am going to display a bunch of problems on the board. Try to figure out how to do these problems. Then use them to figure out the rule for taking a power to a power.

Can you figure out how these would work?

$$
\left(x^{3}\right)^{4}
$$

$$
\left(a^{5}\right)^{2}
$$

$\left(\frac{b^{2}}{c^{3}}\right)^{4}$

After you solve these, come up with some rules that you discover about how to take a power to a power.

2 ways to show $\left(a^{5}\right)^{2}$

Way 2
$\left(a^{5}\right)^{2}$
$=(a \cdot a \cdot a \cdot a \cdot a)^{2}$
$=(a \cdot a \cdot a \cdot a \cdot a)(a \cdot a \cdot a \cdot a \cdot a$
$=a^{10}$

Taking a Power to a Power (Problems like $\left(a^{5}\right)^{2}$)

- Keep the base, multiply the exponents

