NEED BOOK TODAY!

• Also, we will take 5-10 minutes of PUP to look at the report cards and your TNReady score reports from last year.

Warmup $1/(3^2-9+7+2)$ 1. If a = -3, b = 6, and c = -4, evaluate the expression. $a^3 - b^2 + 5c^2$

Created by Quinn Jones

2. Explain how $(-5)^{10}$ and -5^{10} would be different. (You don't have to work them out; just explain the difference.)

p. 19 (1-3, 5, 7, 9-12)	
1. (- 5) ⁴	9311
2. $3^2 \cdot 5 \cdot q^3$	10. 37
3. m^5	11. 16
	12.10
5. $\frac{1}{81}$	
7. 8,000,000,000 (8 billion)	

9)
$$g^{5} - h^{3}$$

(2)⁵ - (7)³
32 - 343
(1/2)² · (2)⁶
-311
10) $c^{2} + d^{3}$
64 + (-27)
37
(1) $(c^{2} + d^{3})$
(1)

THE RULES... Multiplying Powers with the same base • Keep the base, add the exponents Dividing Powers with the same base • Keep the base, subtract the exponents

2

Super-Craz	y Example	
Simplify:	$\frac{-2a^6\cdot 6b^3\cdot a\cdot 4b^5}{18b^4\cdot a^5\cdot 3b^2}$	
		•

3	
Power to a Power	
Objective:	
Simplify expressions like $(x^5)^3$	

CHALLENGE

- We are going to learn a new exponent rule today.
- Once again, I am not going to tell you the rule right away. I want to see if you can figure it out.
- I am going to display a bunch of problems on the board. Try to figure out how to do these problems. Then use them to figure out the rule for taking a power to a power.

Taking a power to a power $(x^3)^4$ $(a^5)^2$ $(p^1)^6$ $(m^5n^2)^3$ $\left(\frac{b}{c^3}\right)^4$ $\left(3y^4\right)^2$ $\left(\frac{k^7}{4}\right)^3$ After you solve these, come up with some **rules** that you discover about how to take a power to a power.

