Created by Jacob Creekmore
WARMUP $1 /\left(\frac{7 \cdot 7 \cdot 7 \cdot 7 \cdot 2}{7 \cdot 7 \cdot 7}\right)$
Graph both on the same coordinate plane.

3) $y=-\frac{1}{5} x+6$
4) $y=3 x-6$

$$
\underbrace{6^{-4}}_{0006}
$$

Why doesn't this work?

6×10^{-4}

.0006

Why does the "move
the decimal" trick work here???

6×10^{-4}

$$
\begin{aligned}
& =6 \times \frac{1}{10^{4}} \\
& =\frac{6}{10^{4}}
\end{aligned}
$$

...which means you're starting with 6 and you're dividing by ten 4 times!

Table of Contents ($2^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Zero and Negative Exponents (1.5)
p. 3 Multiplying and Dividing Powers (1.3)

Multiplying \& Dividing Powers

Objective:
Use exponent rules to simplify expressions

What do you think this answer would

 BE???
$\mathbf{8}^{5} \cdot \mathbf{8}^{\mathbf{2}}$

The exponent just "keeps track" of how many 8's you're multiplying. First you were multiplying five 8's. Then you have two
8^{3} ?
 more. Altogether, you are multiplying seven 8 's.

8^{10} ?

8^{25} ?
Something else???

What do you think this answer would
 BE???
 $\frac{2^{10}}{2^{5}}$
 The five 2's from the denominator will divide with five 2's from the numerator to equal 1. There will be five 2's remaining in the numerator.
 $2^{5} ?$
 2^{15} ?

The RULES...

Multiplying Powers with the same base

- Keep the base, add the exponents

Dividing Powers with the same base

- Keep the base, subtract the exponents

TRY IT WITH NUMBERS...

$2^{3} \cdot 2^{2}$
$8 \cdot 4=32$ which is 2^{5}

2^{6}

64
$2^{3} \quad \overline{8}$

$$
\begin{aligned}
& 2^{1}=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \\
& 2^{4}=16 \\
& 2^{5}=32 \\
& 2^{6}=64 \\
& 2^{7}=128 \\
& 2^{8}=256
\end{aligned}
$$

Examples: MULTIPLying

1. $a^{45} \cdot a^{22} \quad a^{67}$
2. $6^{5} \cdot 6^{3}$
6^{8}
3. $\mathrm{x}^{3} \cdot \mathrm{y}^{5} \cdot \mathrm{y}^{2} \cdot \mathrm{x} \quad \mathrm{x}^{4} \cdot \mathrm{y}^{7}$
4. $12 \mathrm{j}^{5} \cdot 3 \mathrm{j}^{2}$

$$
\begin{gathered}
12 \cdot j \cdot j \cdot j \cdot j \cdot j \cdot 3 \cdot j \cdot j \\
=36 j^{7}
\end{gathered}
$$

Examples: DIVIDING

$$
\begin{array}{ll}
\text { 1. } \frac{a^{45}}{a^{22}} & a^{23} \\
\text { 2. } \frac{6^{5}}{6^{3}} & 6^{2}
\end{array}
$$

3. $\frac{x^{3} y^{5}}{x y^{2}}$
4. $\frac{12 j^{5}}{3 j^{2}}$

$$
\begin{aligned}
& \mathrm{x}^{2} \mathrm{y}^{3} \\
& \frac{12 \cdot j \cdot j \cdot j \cdot j \cdot j}{3 \cdot j \cdot j} \\
& =4 \mathrm{j}^{3}
\end{aligned}
$$

CAREFUL...

$7 x^{5}$

$7 x^{3}$

7^{5}
$\overbrace{\text { THESE 7'S DO }}^{7^{3}}$
NOT CANCEL
OUT!!!

Here the 7's are coefficients. There is 1 of each. The 7's would "divide away."

Here the 7's are the actual base. There are five 7's in the numerator and three 7's in the denominator. There would be two 2's remaining in the denominator.

Helpful Hint

WHEN IN DOUBT, EXPAND IT OUT!!!

EXAMPLES WITH NEGATIVES

0 ***Never leave a zero or negative exponent in your answer! If you have one, you need to rewrite it.

1) $x^{3} \cdot x^{-5}$

$$
=x^{3+(-5)}=x^{-2}=\frac{1}{x^{2}}
$$

$$
\text { 2) } \frac{g^{4}}{g^{10}}=g^{4-10}=g^{-6}=\frac{1}{g^{6}}
$$

$$
\text { 3) } \begin{aligned}
\frac{q^{3} q^{2}}{q^{5}}=\frac{q^{5}}{q^{5}}=q^{5-5}=q^{0}=\text { 14) } & 5 p^{-4} \cdot 3 p^{-2} \\
& =15 p^{-6}=15 \cdot \frac{1}{p^{6}}=\frac{15}{p^{6}}
\end{aligned}
$$

A Little harder...

TIP:

Go step by step. Do the coefficients, then one variable, then the other.

1. $\mathbf{4} a^{2} b^{3} \cdot \mathbf{7 a} \cdot \mathbf{2} b^{5}$

$$
=4 \cdot a \cdot a \cdot b \cdot b \cdot b \cdot 7 \cdot a \cdot 2 \cdot b \cdot b \cdot b \cdot b \cdot b
$$

$$
=56 a^{3} b^{8}
$$

$6 c^{5} \cdot 3 d^{7}$
2. $\frac{6 c \cdot 3 d}{9 c d^{4}}$
$=\frac{6 \cdot c \cdot c \cdot c \cdot c \cdot{ }^{1} d \cdot 3 \cdot^{1} \not{ }^{1} \cdot \mu{ }^{1} \not \mu^{1}{ }^{1} \mu \cdot d \cdot d \cdot d}{9 \cdot d \cdot d \cdot d \cdot \boldsymbol{A} \cdot \boldsymbol{\mu}}$

$$
=\frac{18 \cdot c^{4} \cdot d^{3}}{9} \quad=2 c^{4} d^{3}
$$

HOMEWORK

- Textbook p. 27 (1-6, 8, $14-20$)

