Created by Mr. Lischwe

WARMUP $1 /\left(0.1425 \times 10^{2}-\left(\frac{1}{2}\right)^{2}\right)$

1. Expand: $8 f^{3}$.
2. Copy the date problem from above and show work to verify that it is correct. (Today is the $14^{\text {th }}$)
3. Evaluate all three: $-4^{4} \quad(-4)^{4} \quad-\left(4^{4}\right)$

2 VOLUNTEERS

- 1 to collect corrections
- 1 to collect extension
- GIVE THEM YOUR ORIGINAL TEST PACKET TOO!

Table of Contents ($2^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Multiplying and Dividing Powers (1.3)

Multiplying \& Dividing Powers

Objective:
Use exponent rules to simplify expressions

What do you think this answer WOULD BE???
${ }^{\circ} \mathbf{8}^{5} \cdot \mathbf{8}^{\mathbf{2}}$
$8^{3} ?$

$$
8^{7} ? \quad 8^{10} ? 8^{25} ?
$$

Something else???

What do you think this answer

 WOULD BE???$\frac{2^{10}}{2^{5}}$

$$
\begin{aligned}
& 2^{2} ? \\
& 2^{5} ?
\end{aligned}
$$

$$
2^{15} ?
$$

Activity: LEARN \& TEACH

- There are two important rules to learn today - one for each problem we just looked at.
- Half the tables will learn one rule and half the tables will learn the other.
- Then I will pair tables together and each table will teach the other table their rule.

GOOD GROUP-MATES...

1. respect one another.
2. all contribute to the group.
3. help each other understand!
4. work together, not separately.
5. don't distract each other by talking.
6. get their group-mates back on track if they are distracted.

The RuLES...

Multiplying Powers with the same base

- Keep the base, add the exponents

Dividing Powers with the same base

- Keep the base, subtract the exponents

What do you think this answer WOULD BE???
 ${ }^{-8} \cdot \mathbf{8}^{2}$
 The exponent just "keeps track" of how many 8's you're multiplying. First you were multiplying five 8's. Then you have two
 8^{3} ?
 more. Altogether, you are multiplying seven 8 's.
 8^{10} ?
 8^{25} ?

Something else???

What do you think this answer WOULD BE???
 $\frac{2^{10}}{2^{5}}$
 The five 2's from the denominator will divide with five 2's from the numerator to equal 1. There will be five 2's remaining in the numerator.
 2^{5} ?
 $$
2^{15} ?
$$

TRY IT WITH NUMBERS...

$2^{3} \cdot 2^{2}$
$8 \cdot 4=32$ which is 2^{5}

$$
\begin{aligned}
& 2^{1}=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \\
& 2^{4}=16 \\
& 2^{5}=32 \\
& 2^{6}=64 \\
& 2^{7}=128 \\
& 2^{8}=256
\end{aligned}
$$

EXAMPLES: MULTIPLYING

1. $a^{45} \cdot a^{22} \quad a^{67}$
2. $6^{5} \cdot 6^{3}$
6^{8}
3. $\mathrm{x}^{3} \cdot \mathrm{y}^{5} \cdot \mathrm{y}^{2} \cdot \mathrm{x}$
$\mathrm{x}^{4} \cdot \mathrm{y}^{7}$
4. $12 \mathrm{j}^{5} \cdot 3 \mathrm{j}^{2}$
$12 \cdot j \cdot j \cdot j \cdot j \cdot j \cdot 3 \cdot j \cdot j$

$$
=36 j^{7}
$$

HOMEWORK

- Textbook p. 27 (1-6, 8, 14-18)

