Warm Up- Simplify!

Some polynomials have special names based on their degree and the number of terms they have.

- $\left(2 x^{3} y^{2}\right)\left(3 x^{2} y\right)$
$\cdot\left(5 x^{5} y\right)\left(10 x^{2} y^{2}\right)$
- $2(x+3)$
-4($\left.x^{2}+6 x\right)$

WHY???	Degree	Name	Terms	Name
	0	Constant	1	Monomial
	1	Linear	2	Binomial
	2	Quadratic	3	Trinomial
	3	Cubic	$\begin{aligned} & \text { 4or } \\ & \text { more } \end{aligned}$	Polynomial
	4	Quartic		
	5	Quintic		
	6 or more	$6^{\text {th }} 7^{\text {th }} \text {,degree }$ and só on		

Quiz Thursday

What is the
DISTRIBUTIVE PROPERTY?

- Know
-Adding and Subtracting Polynomials
- Multiplying Polynomials

Multiply.

6pq(2p-q)

$(6 p q)(2 p-q)$
$(6 p q) 2 p+(6 p q)(-q)$
$(6 \cdot 2)(p \cdot p)(q)+(-1)(6)(p)(q \cdot q)$
$12 p^{2} q-6 p q^{2}$

Multiply.

$3 a b\left(5 a^{2}+b\right)$

$$
\begin{gathered}
3 a b\left(5 a^{2}+b\right) \\
(3 a b)\left(5 a^{2}\right)+(3 a b)(b) \\
(3 \cdot 5)\left(a \cdot a^{2}\right)(b)+(3)(a)(b \cdot b) \\
15 a^{3} b+3 a b^{2}
\end{gathered}
$$

Multiply.

$$
\underbrace{4\left(3 x^{2}+4 x-8\right)}_{4\left(3 x^{2}+4 x-8\right)}
$$

(4) $3 x^{2}+(4) 4 x-(4) 8$
$12 x^{2}+16 x-32$

Multiply

$$
4 x^{2} y\left(x^{3}+2 y^{2}+3 x y\right)
$$

Multiply
$x^{2}\left(2 x^{4}+3 x^{3} y^{2}+8 x y+12 y\right)$

How can we find the area of the big rectangle?

To Multiply a Binomial by a Binomial
-Multiply every term of the first binomial by every term of the second binomial
$=(x+1)(x+2)$
$=x(x)+x(2)+1(x)+1(2)$
$=x^{2}+2 x+x+2$
$=x^{2}+3 x+2$

Find the area of the big rectangle

Find the area of the big rectangle

Some people call multiplying Binomials "FOIL"ing

1. Multiply the First terms. $\frac{F}{(x+3)(x+2)} \longrightarrow x \cdot x=x^{2}$
2. Multiply the Outer terms. $(\underset{(x+3)(x+2)}{0} \longrightarrow x \cdot 2=2 x$
3. Multiply the Inner terms. $(x+3)(x+2) \longrightarrow 3 \cdot x=3 x$
4. Multiply the Last terms. $(x+3)(x+2) \longrightarrow 3 \cdot 2=6$

Multiply.

$$
\begin{aligned}
& (x+4)(x-2) \\
& =x(x)+x(-2)+4(x)+4(-2) \\
& =x^{2}-2 x+4 x-8 \\
& =x^{2}+2 x-8
\end{aligned}
$$

$$
\begin{aligned}
& \text { Multiply. } \\
& (x+6)(x-7) \\
& =x(x)+x(-7)+6(x)+6(-7) \\
& =x^{2}-7 x+6 x-42 \\
& =x^{2}-x-42
\end{aligned}
$$

- You do not have to multiply in the order of FOIL.
- You just have to make sure that you multiply every term in the first set of parentheses by every term in the second set of parentheses.

Multiply.
$(x-3)(x-2)$
$=x(x)+x(-2)+(-3) x+(-3)(-2)$
$=x^{2}-2 x-3 x+6$
$=x^{2}-5 x+6$

Multiply.
$(x-2)(x+8)$
$=x(x)+x(8)+(-2) x+(-2)(8)$
$=x^{2}+8 x-2 x-16$
$=x^{2}+6 x-16$

Multiply.

$$
\begin{aligned}
& (2 x-1)(x+5) \\
& =(2 x)(x)+(2 x)(5)+(-1) x+(-1)(5) \\
& =2 x^{2}+10 x-x-5 \\
& =2 x^{2}+9 x-5
\end{aligned}
$$

Multiply.
$(6-2 s)(3-s)$

Homework
Worksheet

Multiply.
$(3 x+9)(2 x-1)$

Multiply.
$(5+2 a)(5-2 a)$

Helpful Hint
In the expression $(x+5)^{2}$, the base is $(x+5)$. $(x+5)^{2}=(x+5)(x+5)$

Multiply.

- $(x+4)^{2}$
$=(x+4)(x+4)$
$=x(x)+x(4)+4(x)+4(4)$
$=x^{2}+4 x+4 x+16$
$=x^{2}+8 x+16$

To Multiply a Binomial by a Trinomial

-Multiply every term in the binomial by every term in the trinomial

Multiply.

$$
\begin{aligned}
& \cdot(x+4)\left(x^{2}+2 x+4\right) \\
& =x\left(x^{2}\right)+x(2 x)+x(4)+4\left(x^{2}\right)+4(2 x)+4(4) \\
& =x^{3}+2 x^{2}+4 x+4 x^{2}+8 x+16 \\
& =x^{3}+6 x^{2}+12 x+16
\end{aligned}
$$

WORD PROBLEM

To Multiply any Polynomials
-Multiply every term of the first polynomial by every term of the second polynomial

The width of a rectangle is $\mathbf{2}$ meters shorter than its length.
A. Draw a picture, and write an expression for the area of the rectangle.

$$
(x-2) \square \begin{aligned}
& A=x(x-2) \\
& A=x^{2}-2 x
\end{aligned}
$$

B. Find the area of a rectangle when the length is 6 meters.

$$
\begin{aligned}
& A=6^{2}-2(6) \\
& A=36-12 \\
& A=24
\end{aligned}
$$

CHALLENGE

$$
(x+2)(x+2)(x-2)
$$

> - Multiply the first two binomials

- $=\left[x^{2}+x(2)+2(x)+2(2)\right](x-2)$
$=\left(x^{2}+4 x+4\right)(x-2)$
- Multiply the resulting trinomial and binomial
- $=x^{2}(x)+\left(x^{2}\right)(-2)+4 x(x)+4 x(-2)+4(x)+4(-2)$
- $=x^{3}-2 x^{2}+4 x^{2}-8 x+4 x-8$
$=x^{3}+2 x^{2}-4 x-8$

