Created by Mr. Lischwe

Warmup 1/(2 $\left.\cdot 3^{2}\right)$

1) Explain why you would multiply the 4's in the blue problem but NOT in the purple problem.

$$
4 x^{6 \cdot\left(6 x^{9}\right)}
$$

$=4^{9}$
$4^{6} \cdot \mathbf{4}^{3}$

These 4's are coefficients.
They are not connoted tot the
exponent.

These 4's are bases.
They are connoted to the
2) Pretend you are creating a multiple choice test. Using the date problem $\left(2 \cdot 3^{2}\right)$, create four answer choices.
One choice should be correct, and the other three choices should come from errors a student might make.
A) 18 (correct)
B) 36
C) 12
D) 1296
4) 4^{-2}

Here were some of the answers I got...

$$
-16 \quad 16
$$

» Find a pattern and use it to complete the table:

2^{3}

2^{5}

a) Using the dividing powers rule? 2^{-2}

c) By multiplying first, then simplifying?

$$
\frac{8}{32} \rightarrow \frac{1}{4}
$$

$$
\begin{array}{ll}
4^{-2} & \frac{1}{16} \\
2^{-3} & \frac{1}{8} \\
10^{-3} & \frac{1}{1000} \\
2^{-4} & \frac{1}{16} \\
7^{-1} & \frac{1}{7}
\end{array}
$$

Examples - Try these in your headury

Try to fill in the blanks so that the exponent would be negative 3 :

What about with variables?

Negative Exponents:

Rule: $x^{-n}=\frac{1}{x^{n}}$
» Negative exponent:
> 1 over the same power with a positive exponent

» Any time you expand a power, there is really an "invisible 1" being multiplied by everything.
$3^{4}=2 \cdot 3 \cdot 3 \cdot 3 \cdot 3$

$$
\text { The }{ }^{\text {coinvisilble }]^{20}}
$$

» POSITIVE EXPONENTS:

$>$ Are 1 TIMES the base that many times
$>2^{4}=1 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

» NEGATIVE EXPONENTS:

$>$ Are 1 DIVIDED BY the base that many times
$>2^{-4}=1 \div 2 \div 2 \div 2 \div 2$
$=\frac{1}{2 \cdot 2 \cdot 2 \cdot 2}$
$=\frac{1}{2^{4}}$
» ZERO EXPONENTS:
$>$ Are the 1 not multiplied or divided by anything
$>2^{0}=1$
»Positive exponents mean to multiply.
»Negative exponents mean to divide!

Examples

$$
\begin{array}{ll}
\text { 1) } 3^{-2}=\frac{1}{9} & \text { 2) } b^{-7}=\frac{1}{b^{7}} \\
\text { 3) } x^{3} \cdot x^{-5} & \text { 4) } \frac{g^{4}}{g^{10}}=g^{-6}=\frac{1}{g^{6}} \\
=x^{-2}=\frac{1}{x^{2}} &
\end{array}
$$

Negative Exponents

Mathematiciens say:

Never leave your a zero or negative exponent in your answer. It is not simplified yet.

6^{-4}

. 0006

Why doesn't this work?

It's not scientific notation! This would be 6×10^{-4}.

this:

» $6 x^{-4}$

» The six is NOT connected to the exponent.
> $6 \cdot x^{-4}$
) $6 \cdot \frac{1}{x^{4}}$
> $\frac{6}{1} \cdot \frac{1}{x^{4}}$
$\frac{6}{x^{4}}$
WWatt about this?

Hey x^{-3} ! I'm lonely!
Come hang out with me!!!

$$
=\frac{5}{x^{4} \cdot x^{3}}
$$

$$
=\frac{5}{x^{7}}
$$

» The negative power only goes

 under 1 if there's nothing else in the problem. If there's other stuff in the problem, the negative power goes under that.$$
b^{-7} \rightarrow \frac{1}{b^{7}} \quad a^{5} b^{-7} \rightarrow \frac{a^{5}}{b^{7}}
$$

V/nat ఏbouf:

 1
x^{-5}

" If the negative exponent is already in the denominator, it moves back up to the numerator.

$$
\frac{1}{x^{-5}}>x^{5}
$$

WWhet about:

$$
\begin{array}{ll}
m^{4} & \frac{2 \text { Methods: }}{m^{-2}-2} \\
& \frac{\text { Shortcut }}{m^{4}} \\
& =m^{4-(-2)} \\
& =m^{6}
\end{array}
$$

Moving Neg. Exponent First $\frac{m^{4}}{m^{-2}}$
$\frac{m^{4} \cdot m^{2}}{1}$
$=m^{6}$

» Simplify using the zero \& negative exponent properties.

$$
\begin{aligned}
& \text { 3) } \begin{aligned}
\frac{q^{3} q^{2}}{q^{5}} & =\frac{q^{5}}{q^{5}} \\
& =q^{0}
\end{aligned} \\
& =1 \\
& \text { 4) } \begin{aligned}
\frac{n^{-3}}{n^{5}} & =n^{-3-5} \\
& =n^{-8}
\end{aligned} \\
& =\frac{1}{n^{8}} \\
& \text { 5) } a^{4} b^{4} \cdot a^{6} b^{-6} \\
& =a^{10} b^{-2} \\
& =a^{10} \cdot \frac{1}{b^{2}} \quad=\frac{a^{10}}{b^{2}} \\
& \text { 6) } \frac{c^{5} d^{2}}{c^{2} d^{5}}=\frac{1^{1} \cdot \frac{1}{4} \cdot c \cdot c \cdot \frac{1}{d} \cdot \frac{1}{d} \cdot d}{d \cdot d \cdot d \cdot d \cdot d \cdot d} \\
& =\frac{c^{3}}{d^{3}} \\
& \text { CHALLENSGE! }
\end{aligned}
$$

» Positive exponents mean to multiply.
» Negative exponents mean to divide!!!
» We put them into a fraction because FRACTIONS ARE DIVISION.

» On Tuesday, we are doing a big review activity called "Levels"
» I will need 3 or 4 "student checkers." Instead of doing the activity, they will be checking everyone else's work.
» What's the catch???
» If you want to be a checker, you must do the activity as homework this weekend.
» If you are interested in being a checker, come to my desk.

TUESOQVDS ASHivity oo.

$$
\begin{aligned}
& \text { »p. } 26(1-4) \\
& \text { » } 1 \text { p. } 34(2,4,6) \\
& \text { »p. } 49(31-36)
\end{aligned}
$$

" *You can do them all on a separate sheet of paper if you don't feel like tearing 3 pages out of your book.

凡onnework

