BRING

TEXTBOOK!!!!

Warmup $11 /\left(\frac{1}{2}\right)^{-1}$

Created by Mr. Lischwe

1. $-8-11$
2. $-23+7$
3. $\frac{3}{5} \cdot 35$
4. $5 \div \frac{2}{5}$
5. How many triangles are there? Triangles can be any size.

New Erasers...

- They are a little fragile. Be gentle with them. DO NOT PULL THEM APART.
- Even more importantly...
- DO NOT DRAW ON THEM!!!

New Unit: Solving Equations

- I have had a lot of struggling students really improve on this unit!
- What we just got done doing:
- Bob has $\$ 50$. He earns $\$ 8$ per hour. Write an equation to show how much he has after " x " hours.

$$
y=8 x+50
$$

- What we will be doing next:
- Bob has $\$ 50$. He earns $\$ 8$ per hour. How long will it take him to have \$170?

$$
170=8 x+50
$$

Pretest: Solving Equations

- Our next unit is on solving equations.
- I don't want to spend too much time teaching you stuff you already know. I would rather start where you are and go deeper.
- This pretest will help me know where your skills are at right now!
- If you don't know one, that is okay, but you should still try it!!!
- Please show your work.

Let's start at the beginning...

- One-step equations
- Focusing STRONGLY on equations with fractions

Table of Contents

p. 1 Converting Fractions and Decimals (1.1)
p. 2 Roots (1.8 \& 1.9)
p. 3 Solving x^{2} and x^{3} Equations (1.8)
p. 4 Rational vs. Irrational (1.1)
p. 5 What is a function?
p. 6 Function Notation: $f(x)$
p. 7 Linear vs. Nonlinear Functions
p. 8 Constant Rate of Change
p. 9 Slope
p. 10 Graphing Linear Functions - Looking for Patterns
p. 11 Slope-Intercept Form
p. 12 Linear/Nonlinear Tables and Proportional Relationships
p. 13 Slope-Intercept Story Problems
p. $14 \quad 1$ and 2-Step Equations

1 and 2-Step Equations

Objective:

- Solve 1 and 2 step equations
- Know how to check a solution

First, let's review normal 1-step equations...

$$
\text { 1. } \begin{gathered}
x+4=11 \\
-4 \quad-4 \\
x=7
\end{gathered}
$$

First, let's review normal 1-step equations...

$$
\text { 1. } \begin{aligned}
\frac{3 x}{3} & =\frac{12}{3} \\
1 x & =4 \\
x & =4
\end{aligned}
$$

Equations with a fraction?

$$
\begin{array}{rr}
\frac{2}{\frac{3}{\frac{2}{3}} x=\frac{6}{\frac{2}{3}}} & 6 \div \frac{2}{3} \\
1 x=? & =6 \cdot \frac{3}{2} \\
x=9 & =\frac{18}{2} \\
x & =9
\end{array}
$$

CHECK

$\cdot \frac{2}{3} x=6$
$\cdot \frac{2}{3}(9)=6$?
$\cdot \frac{18}{3}=6$
$\cdot 6=6$

- It works!

Faster way:

When there's a fraction in front of the variable...

$$
\begin{gathered}
\frac{2}{3} x=6 \\
\frac{3}{2} \cdot \frac{2}{3} x=6 \cdot \frac{3}{2}
\end{gathered}
$$

$$
\begin{gathered}
1 x=9 \\
x=9
\end{gathered}
$$

Mental Math strategies...

$\cdot \frac{2}{3} x=6$

- " $2 / 3$ of something is 6 "

- If $2 / 3$ is 6 , then $1 / 3$ is 3
- The whole thing must be 9 !

One-Step: Examples

$$
\text { 1. } \frac{1}{6} x=12
$$

$$
x=72
$$

$$
\text { 2. }-\frac{4}{3} x=20
$$

$$
x=-15
$$

3. $\frac{15}{8}=\frac{5}{2} x$

$$
x=\frac{3}{4}
$$

Mixed Numbers...

$$
\begin{aligned}
1 \frac{5}{6} x & =16 \frac{1}{2} \\
\frac{11}{6} x & =\frac{33}{2} \\
\frac{6}{11} \cdot \frac{11}{6} x & =\frac{33}{2} \cdot \frac{6}{11} \\
x & =9
\end{aligned}
$$

EQUATIONS WITH FRACTIONS: RULES

- "If there's a fraction in front of the variable, you gotta multiply by the reciprocal."
- THIS WORKS BECAUSE: You are trying to get 1 x , and any fraction times its reciprocal is 1 !!!
- If you have mixed numbers, you should change them into improper fractions to make them easier to deal with.

