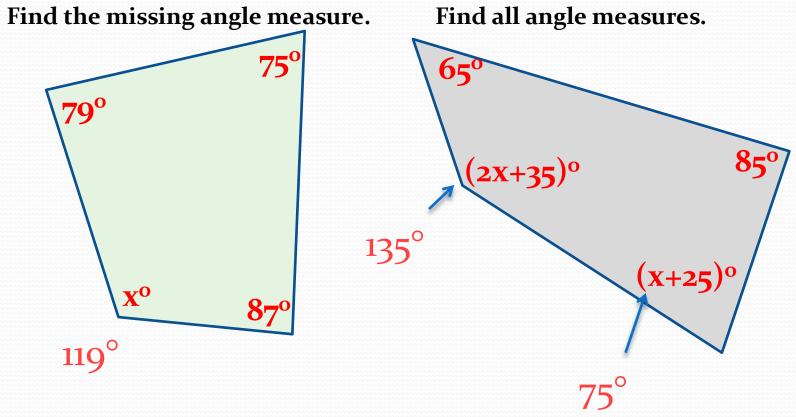
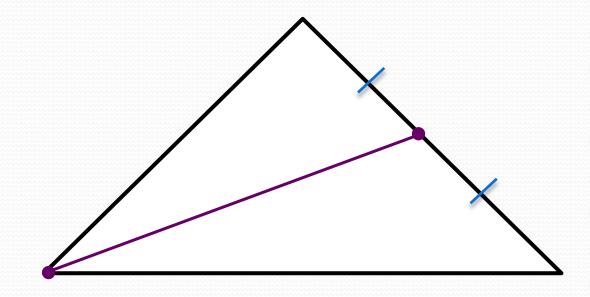
Created by Mr. Lischwe

Warmup 3/(The sum <u>or</u> product of 1, 2, and 3)

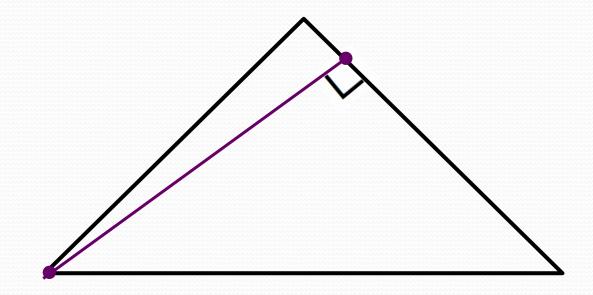
Ruler and Protractor



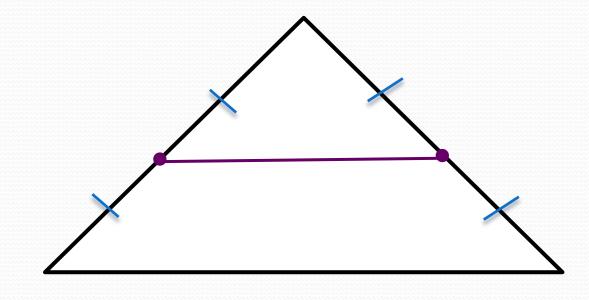
Check Homework



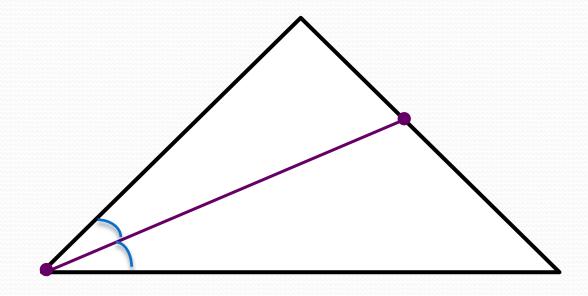
Median



Altitude



Midsegment



Angle Bisector

Objective:

 Identify properties of parallelograms

What is a parallelogram?

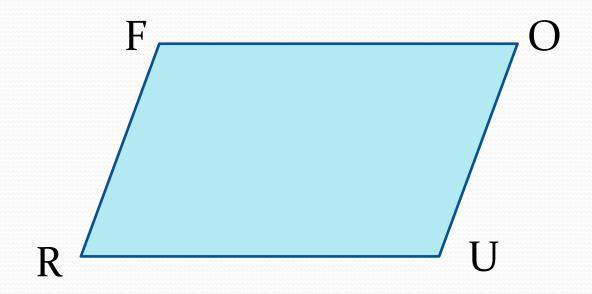
• a quadrilateral with opposite sides parallel

Exploration: Parallelograms

Come up with a list of as many additional properties as you can about parallelograms.

- What is true about the **sides** of a parallelogram?
- What is true about the **angles** of a parallelogram?
- Did anyone draw the diagonals through the middle and look at those?

Which sides are opposite sides? Which angles are opposite angles? Which angles are consecutive angles? What are diagonals?



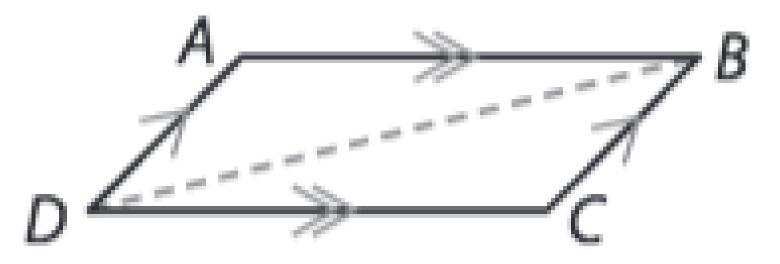
• <u>Parallelograms</u>

- Opposite sides parallel
- Opposite sides congruent
- Opposite angles congruent
- Consecutive angles are supplementary
- Diagonals bisect each other

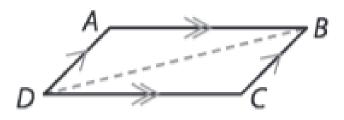
Let's prove these properties!

Prove: $\overline{AB} \cong \overline{CD}$ and $\overline{AD} \cong \overline{CB}$

(Prove that opposite sides are congruent)



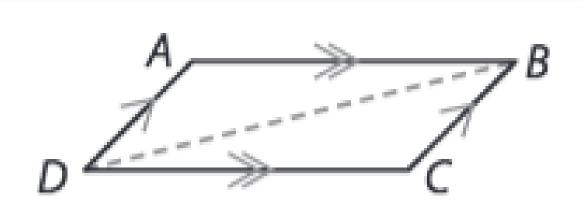
Prove: $\overline{AB} \cong \overline{CD}$ and $\overline{AD} \cong \overline{CB}$



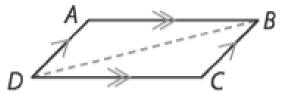
Statements	Reasons
1. ABCD is a parallelogram.	1. Given
2. Draw DB.	 Through any two points, there is exactly one line.
3. $\overline{AB} \ \overline{DC}, \overline{AD} \ \overline{BC}$	3.
4. ∠ADB \cong ∠CBD ∠ABD \cong ∠CDB	4.
5. $\overline{DB} \cong \overline{DB}$	5.
6. △ ABD ≅	6. ASA Triangle Congruence Theorem
7. $\overline{AB} \cong \overline{CD}$ and $\overline{AD} \cong \overline{CB}$	7.

Prove: $\angle A \cong \angle C$ (A similar proof shows that $\angle B \cong \angle D$.)

(Prove that opposite angles are congruent)



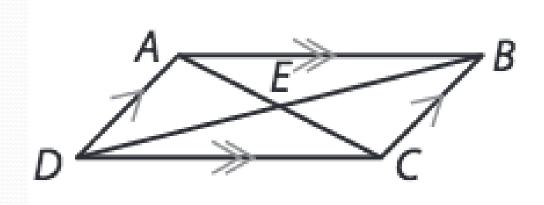
Prove: $\angle A \cong \angle C$ (A similar proof shows that $\angle B \cong \angle D$.)



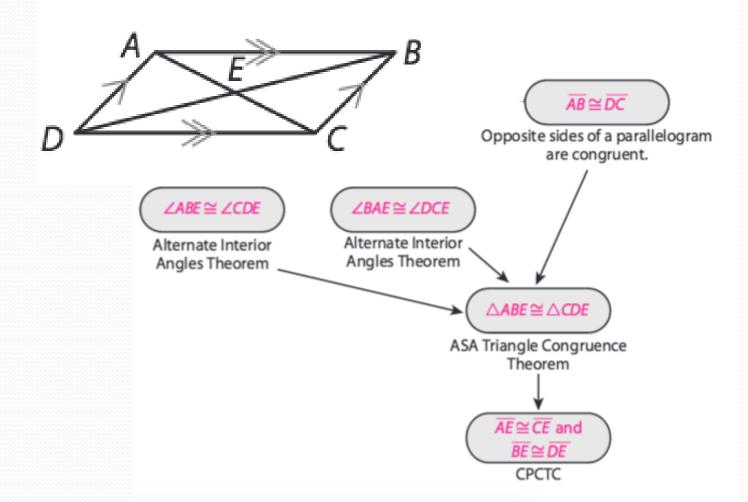
Statements	Reasons
1. ABCD is a parallelogram.	1. Given
2. Draw DB.	2. Through any two points, there is exactly one line.
3. $\overline{AB} \ \overline{DC}, \overline{AD} \ \overline{BC}$	3. Definition of parallelogram
4. ∠ADB \cong ∠CBD, ∠ABD \cong ∠CDB	4. Alternate Interior Angles Theorem
5. $\overline{DB} \cong \overline{DB}$	5. Reflexive Property of Congruence
6. $\triangle ABD \cong \triangle CDB$	6. ASA Triangle Congruence Theorem
7. ∠ A ≅ ∠ C	7. CPCTC

Prove: $\overline{AE} \cong \overline{CE}$ and $\overline{BE} \cong \overline{DE}$

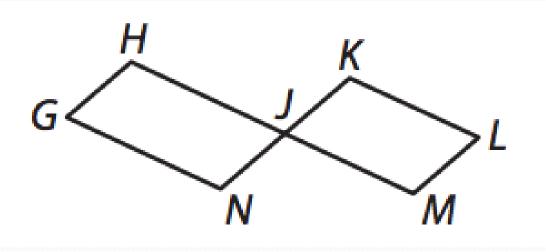
(Prove that diagonals bisect each other)



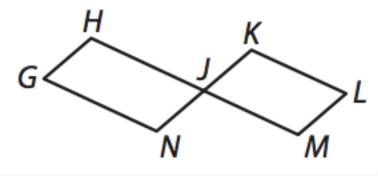
Given: *ABCD* is a parallelogram. Prove: $\overline{AE} \cong \overline{CE}$ and $\overline{BE} \cong \overline{DE}$



Given: *GHJN* and *JKLM* are parallelograms. Prove: $\angle G \cong \angle L$

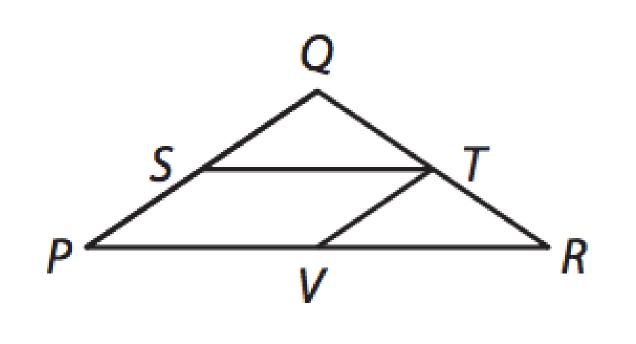


Given: *GHJN* and *JKLM* are parallelograms. Prove: $\angle G \cong \angle L$

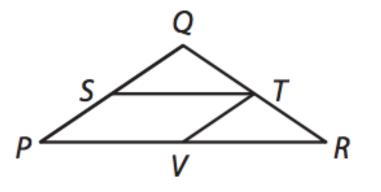


Statements	Reasons
^{1.} GHJN and JKLM are parallelograms.	1. Given
2.	
3.	
4.	

Given: *PSTV* is a parallelogram. $\overline{PQ} \cong \overline{RQ}$ Prove: $\angle STV \cong \angle R$



Given: *PSTV* is a parallelogram. $\overline{PQ} \cong \overline{RQ}$ Prove: $\angle STV \cong \angle R$



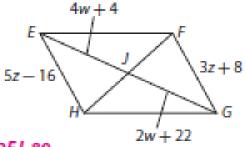
Statements	Reasons
1. PSTV is a parallelogram.	1. Given
2. $\angle STV \cong \angle P$	2. Opp. angles of a 🗁 are congruent.
3. $\overline{PQ} \cong \overline{RQ}$	3. Given
4. △ <i>PQR</i> is isosceles.	4. Definition of isosceles triangle
5. $\angle P \cong \angle R$	5. Isosceles Triangle Theorem
6. $\angle STV \cong \angle R$	6. Transitive Property of Congruence

Classwork

•pg. 1197 (6-9, 10 -15)

EFGH is a parallelogram. Find each measure.

6. FG $HE \cong FG; 5z - 16 = 3z + 8; z = 12; FG = 44$



7. EG

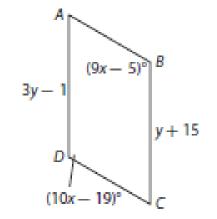
 $\overline{EJ} \cong \overline{GJ}$; 4w + 4 = 2w + 22; w = 9; EJ = 40; EG = 2EJ, 80

ABCD is a parallelogram. Find each measure.

8. m∠B

 $\angle B \cong \angle D$; 9x - 5 = 10x - 19; 14 = x; m $\angle B$ = 121°

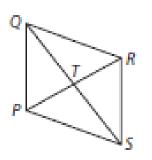
9. AD $\overline{AD} \cong \overline{CB}; 3y - 1 = y + 15; y = 8; AD = 23$



A staircase handrail is made from congruent parallelograms. In $\Box PQRS$, PQ = 17.5, ST = 18, and $m \angle QRS = 110^{\circ}$. Find each measure. Explain.

10. RS

Opp. sides of PRQS are congruent, so RS = PQ = 17.5.



11. QT

The diag. of PRQS bisect each other, so QT = ST = 18.

m∠PQR

Consec. angles of PRQS are supplementary, so $m \angle PQR = 70^{\circ}$.

m∠SPQ

Opp. angles of PRQS are congruent, so $m \angle SPQ = m \angle QRS = 110^{\circ}$.

Homework

• p.1198 (16-21, 24)