Warmup $8 /\left(\right.$ Solution of $\left.\frac{1}{11} \boldsymbol{x}=2\right)$

1. A number that has a square root that is a whole number is called a perfect square.
2. Estimate the square root of 2 .

$$
\sqrt{2} \approx 1.414
$$

(This is a well-known value.This one and $\sqrt{3} \approx 1.732$ are the only ones I have memorized myself)

Purple Chair Reward

- I will select one random person - that person gets to sit in the purple chair all week!
- To be eligible, you need to have done ALL your homework the previous week, or not been penalized for forgetting materials or talking, etc.
- You are responsible for getting the chair and returning it to its spot by my desk each period.
- If you did not win the purple chair, you may not sit in it!!!

Warmup (continued)

3) There are two numbers between 0 and 100 that are both a perfect square and a perfect cube. What are they???

Returning the quizzes

- Your quizzes will go in your summatives folder.
- These will be alphabetized in the crate - you can go back and look at your quizzes and do corrections for retakes.

Consecutive sums bonus task

- A few different strategies I saw...

Perfect square patterns

More patterns - Perfect Squares
$1^{2}=1 \quad 11^{2}=121$
$2^{2}=4 \quad 12^{2}=144$
$3^{2}=9 \quad 13^{2}=169$
$4^{2}=16 \quad 14^{2}=196$
$5^{2}=25 \quad 15^{2}=225$
$6^{2}=36 \quad 16^{2}=256$
$7^{2}=49 \quad 17^{2}=289$
$8^{2}=64 \quad 18^{2}=324$
$9^{2}=81 \quad 19^{2}=361$
$10^{2}=100 \quad 20^{2}=400$
Look at all of the ones digits.
Do you notice anything?
Find $\sqrt{484}$.

Based on this pattern, the square
root MUST end in 2 or 8 .
(That is, unless it's not a perfect square in the first place. For example, $\sqrt{\mathbf{1 4}}$)

More patterns - Perfect Cubes
$1^{3}=1$
$2^{3}=8$
Any guesses for $\sqrt[3]{2197}$?
$3^{3}=27$
$4^{3}=64$
$5^{3}=125$
$6^{3}=216$
$7^{3}=343$
$8^{3}=512$
$9^{3}=729$
Estimate for $\sqrt[3]{480}$?
$10^{3}=1000$
Any guesses for $\sqrt[3]{\mathbf{1 7 5 7 6}}$?

Making our square root estimates more exact

- How can you CHECK an estimate?
$\cdot \sqrt{52}$
- $7.3 \cdot 7.3=53.29$ (too high)
-7.2•7.2 = 51.84 (too low)
- 7.2 was closer , so 7.2 is the best estimate to the nearest tenth.

Challenge

- Find the square root. Your answer must be accurate to the nearest hundredth.
- $\sqrt{\mathbf{1 8}} \quad 4.2 \cdot 4.2=17.64$ (too low)
$4.3 \cdot 4.3=18.49($ too high $)$
$4.25 \cdot 4.25=18.0625$ (too high)
$4.24 \cdot 4.24=17.9776$ (too low)
17.9776 is closer to 18 than 18.0625 .

Therefore, 4.24 is the best estimate.

Using roots to solve equations

The way to solve equations is to use inverse operations.

$$
\text { SOLVE: } x+8=12
$$

SOLVE: $x-3=27$

SOLVE: $4 x=32$

Solving x^{2} and x^{3} equations

- Let's refresh our memory on some symbols...
$\bullet \sqrt{49}$ (the positive square root) 7
$-\sqrt{\mathbf{4 9}}$ (the negative square root) -7
- $\pm \sqrt{\mathbf{4 9}}$ (both!) $\quad 7,-7$

Solve: $x^{2}=64$

What is the inverse of "squaring"?
$\sqrt{x^{2}}=\sqrt{64}$
Would positive 8 AND negative 8 both work?
So you should do $\sqrt{x^{2}}= \pm \sqrt{64}$

$$
x=8,-8
$$

- Solve: $x^{3}=27$
- Would the positive and negative root both work?
$\sqrt[3]{x^{3}}=\sqrt[3]{27}$
$x=3$

What if it's not a perfect square?
Solve each equation. Write both an exact answer and an estimate rounded to the nearest tenth.
5. $x^{2}=40$

ROUNDED ANSWER: $x \approx \pm 6.3$
EXACT ANSWER: $x= \pm \sqrt{40}$

HOMEWORK: Least to Greatest

- Comparing numbers in different forms
- You do NOT have to get the exact answers of everything!!! You should try to "reason it out" first.
- For example: $\frac{1}{8}, \frac{1}{7}, \frac{4}{21}$

Solving x^{2} and x^{3} equations

1. $x^{2}=196 \quad x=14,-14$
2. $x^{3}=125 \quad x=5$
3. $x^{3}=-64 \quad x=-4$
4. $x^{2}=-289$ no solution

IMPORTANT: Be sure to check the positive and the negative root!

How about...

$$
\sqrt{x}=16
$$

\square

