BEFORE YOU START ON TOUGH PATTERN TUESDAY:

- Write a new goal for this class for the 2nd 9 weeks on your blue slip of paper! A volunteer will tape them up to the #goals cabinet.
- A good goal is:
 - Specific
 - Hard enough that you'll be proud if you reach it
 - Not too hard that it's unreachable

1) Sketch step #4.

2) Complete the table:

Step number	1	2	3	4	5	10
(n)						
Number of	7	10	111	10	77	47
hexagons (h)	6	10	17	18		7~

3) Write an equation. #her= 4n+2

"SEL Advisory Board"

- We need a homeroom representative to be on the SEL Advisory board.
- 1-2 meetings every 9 weeks.
- This group will:
 - Give input on our SEL lessons
 - Suggest SEL activities
 - Look for good videos
 - Make videos?

Height of Hot Air Balloon

Interpret the intercepts.

Go over Homework

- Retakes for the Linear Quiz MUST BE DONE TOMORROW. See me if you would like some extra practice.
- Lunch study session today STRONGLY encouraged.

Graph 2 different ways!!!

- 1) Change it into standard form & find the intercepts
- 2) Change it into slope-intercept form

$$-2y = -3x + 6$$

Table of Contents

20

Simplifying & Interpreting Expressions	p:1
Solving Equations	p.2
Fractions & Story Problems	р.З
Equations with No Solution or Infinite Solutions	p.4
Inequalities	p.5
Compound Inequalities	p.6
Solving for a Variable	p.7
What is a Function?	p. 8
Continuous or Discrete	p. 9
Domain & Range	p. 10
Slope	p. 11
Slope WITHOUT a graph	p. 12
Slope-Intercept Form	p. 13
Standard Form	р. 14
Point-Slope Form	p. 15

 The slope of this line is ¾.
 Would the point (21, 19) be on this line? How could you check?

• $\frac{19-7}{21-5} = \frac{12}{16} = \frac{3}{4}$

Would the point (-35, -13) be on this line?

•
$$\frac{-13-7}{-35-5} = \frac{-20}{-40} = \frac{1}{2}$$

Deriving "Point-Slope" Form

 Any (x, y) point that would be on this line must make the equation work:

$$\cdot \frac{y-7}{x-5} = \frac{3}{4}$$

- This is a point-slope equation!
- However, we don't like to have variables in the denominator, so we typically multiply both sides by the denominator to get:

•
$$y-7=\frac{3}{4}(x-5)$$

NOTE: We could have replaced (5, 7) in the equation with any other from the line!

 The equation of a line with slope m that goes through a point (x₁, y₁) is:

$$y - y_1 = m(x - x_1)$$

(Remember: x and y are variables. They stay as x and y. x_1 , y_1 are points on the line!)

Why is point-slope form useful???

- Many mathematicians MUCH prefer point-slope form to slopeintercept form.
- Most students don't like it at first, because it looks more complicated. But be open-minded.
- With slope-intercept form, you need the slope and <u>the y-intercept</u>.
- With point-slope form, you need the slope and literally ANY POINT!!!
- "Billy was saving \$3.50 per day. After 12 days, he had \$50."
- Instead of going back and calculating his original value, you can just write:

```
• y - 50 = 3.50(x - 12)
```

Write an equation in point-slope form:

• Slope = $\frac{1}{6}$; (5, 1)

• Slope = 1; (-1, -4)

Write an equation in point-slope form:

• Slope = 2;
$$(\frac{1}{2}, 1)$$

 $\gamma - (= 2(x - \frac{1}{2}))$

What is the point we know? What is the slope?

•
$$y + 2 = 6(x - 1)$$

Slope=6
point=(1,-2)

•
$$y - 2 = 6(x + 1)$$

 $slope=6$
 $point=(-1, -2)$

Remember, to figure out what the "point" is, think:

 "What are we SUBTRACTING from x and y???"

Write the equation in point-slope form AND slopeintercept form.

 $y - 2 = \frac{5}{3}(x - 3)$

Y= = x-3

Write the equation in point-slope form AND slopeintercept form.

$$\gamma + l = -2(x + 2)$$

$$y = -2x - 5$$

Graph: y + 1 = 3(x - 2)

A gas station has a customer loyalty program. The graph shows the amount of dollars that two members paid for gas.

Why should we use point-slope form for this situation?

Write a function that relates the number of gallons with the cost.

How much will a customer pay for 25 gallons of gas?

Homework:

• Point-Slope Worksheet