BEFORE YOU START ON TOUGH PATTERN TUESDAY:

- Write a new goal for this class for the $2^{\text {nd }} 9$ weeks on your blue slip of paper! A volunteer will tape them up to the \#goals cabinet.
- A good goal is:
- Specific
- Hard enough that you'll be proud if you reach it
- Not too hard that it's unreachable

Warmup 10/($\left.\frac{5000 \cdot 3}{2 \cdot 500}\right)$

1) Sketch step \#4.
2) Complete the table:

Step number (n)	1	2	3	4	5	10
Number of hexagons (b)	6	10	14	18	22	42

3) Write an equation. it $h e x=4 n+2$

"SEL Advisory Board"

- We need a homeroom representative to be on the SEL Advisory board.
- 1-2 meetings every 9 weeks.
- This group will:
- Give input on our SEL lessons
- Suggest SEL activities
- Look for good videos
- Make videos?

Height of Hot Air Balloon

Go over Homework

Reminder

- Retakes for the Linear Quiz MUST BE DONE TOMORROW. See me if you would like some extra practice.
- Lunch study session today STRONGLY encouraged.

Graph 2 different ways!!!

1) Change it into standard form \& find the intercepts
2) Change it into slope-intercept form

$$
-2 y=-3 x+6
$$

Table of Contents

Simplifying \& Interpreting Expressions
Solving Equations
Fractions \& Story Problems
p. 1 p. 2

Equations with No Solution or Infinite Solutions p. 3

Inequalities p. 4Compound Inequalitiesp. 5p. 6
Solving for a Variable p. 7
What is a Function? p. 8
Continuous or Discrete p. 9
Domain \& Range p. 10
Slope p. 11
Slope WITHOUT a graph p. 12
Slope-Intercept Form p. 13
Standard Form p. 14
Point-Slope Form p. 15

"Testing" a point

- The slope of this line is $3 / 4$. Would the point $(21,19)$ be on this line? How could you check?
- $\frac{19-7}{21-5}=\frac{12}{16}=\frac{3}{4}$
- Would the point (-35, -13) be on this line?
- $\frac{-13-7}{-35-5}=\frac{-20}{-40}=\frac{1}{2}$

Deriving "Point-Slope" Form

- Any (x, y) point that would be on this line must make the equation work:
$\cdot \frac{y-7}{x-5}=\frac{3}{4}$
- This is a point-slope equation!
- However, we don't like to have variables in the denominator, so we typically multiply both sides by the denominator to get:

NOTE: We could have Feplaced $(5,7)$ in the equation with any other from the line!

Point-Slope Form

- The equation of a line with slope m that goes through a point $\left(x_{1}, y_{1}\right)$ is:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

(Remember: x and y are variables. They stay as x and $y . x_{1}, y_{1}$ are points on the line!)

Why is point-slope form useful???

- Many mathematicians MUCH prefer point-slope form to slopeintercept form.
- Most students don't like it at first, because it looks more complicated. But be open-minded.
- With slope-intercept form, you need the slope and the y-intercept.
- With point-slope form, you need the slope and literally ANY POINT!!!
- "Billy was saving $\$ 3.50$ per day. After 12 days, he had $\$ 50$. ."
- Instead of going back and calculating his original value, you can just write:
$\cdot y-50=3.50(x-12)$

Write an equation in point-slope form:

- Slope $=\frac{1}{6} ;(5,1)$
- Slope $=1 ;(-1,-4)$

Write an equation in point-slope form:

- Slope $=2 ;(1 / 2,1)$

$$
y-1=2\left(x-\frac{1}{2}\right)
$$

- Slope $=0 ;(3,-4)$

$$
\begin{gathered}
3,-4) \\
y+4=0(x-3) \\
\downarrow \\
y+4=0 \\
\frac{\downarrow}{y}=-4
\end{gathered}
$$

What is the point we know? What is the slope?

- $y+2=6(x-1)$
slope $=6$

$$
\text { point }=(1,-2)
$$

- $y-2=6(x+1)$

$$
\begin{aligned}
& \text { slope }=6 \\
& \text { point }=(-1,2)
\end{aligned}
$$

Remember, to figure out what the "point" is, think:
-"What are we SUBTRACTING from x and y ???"

Write the equation in point-slope form
AND slopeintercept form.
$y-2=\frac{5}{3}(x-3)$

$$
y=\frac{5}{3} x-3
$$

Write the equation in point-slope form AND slopeintercept form.

$$
y+1=-2(x+2)
$$

$$
y=-2 x-5
$$

$$
\text { Graph: } y+1=3(x-2)
$$

Graph: $y-2=4(x+1)$

Graph: $y+5=\frac{2}{3}(x-2)$

A gas station has a customer loyalty program. The graph shows the amount of dollars that two members paid for gas.

Why should we use point-slope form for this situation?

Write a function that relates the number of gallons with the cost.

How much will a customer pay for $\mathbf{2 5}$ gallons of gas?

Homework:

- Point-Slope Worksheet

