Created by Mr. Lischwe
Warmup $1 /\left(\frac{15^{47}}{15^{46}}\right)$
Write an equation in slope-intercept form that gives the height of the plant (y) after " x " weeks.

1) A cactus plant is originally 2 cm tall, and grows $1 / 2 \mathrm{~cm}$ per week.

$$
y=\frac{1}{2} x+2
$$

2) A fern grows 3 cm per week, and is 14 cm tall after 2 weeks.

3) A jade plant was originally 10 cm tall, and was 20 cm tall after 4 weeks.

$$
y=2.5 x+10
$$

$$
\begin{aligned}
& \text { grew } 10 \mathrm{~cm} \text { in } 4 \text { weeks } \\
& \qquad \frac{10}{4}=2.5
\end{aligned}
$$

Who can explain the date problem???
$\cdot 1 /\left(\frac{15^{47}}{15^{46}}\right)=15^{\prime}=15$

- If I take 2^{30} and double it, what do I get? Write your answer as a power.

p. 27 (1-6, 8, 14-20)

1) $(-6)^{7}$
2) $-24 a^{10}$
3) $-35 a^{5} b^{5} c^{5}$
4) 8^{2} (or 64)
5) $2 t^{3}$
6) $x^{2} y^{5}$
7) $4^{1} \cdot 5^{1} \cdot 6^{1}$ or 120
8) 2
9) 9
10) 4
11) 6
12) 5
13) 7
14) Answers vary.

Example: $\mathbf{5}^{10} \cdot \mathbf{5}^{\mathbf{3}}$

Let's review...

- Why is $2^{7} \cdot 2^{3}$ NOT equal to 2^{21} even though this is a multiplication problem?
- Why is $\frac{2^{12}}{2^{4}}$ NOT equal to 2^{3} even though this is a division problem?
-***If you understand WHY a rule works, you are WAY more likely to remember it better!***

Table of Contents ($\mathbf{2}^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Zero and Negative Exponents (1.5)
p. 3 Multiplying and Dividing Powers (1.3)
p. 4 Power to a Power (1.4)

Power to a Power

Objective:

Simplify expressions like $\left(x^{5}\right)^{3}$

CHALLENGE

- We are going to learn a new exponent rule today.
- Once again, I am not going to tell you the rule right away. I want to see if you can figure it out.
- I am going to display a bunch of problems on the board. Try to figure out how to do these problems. Then use them to figure out the rule for taking a power to a power.

Can you figure out how these would work?

$$
\left(x^{3}\right)^{4}
$$

$$
\left(a^{5}\right)^{2}
$$

$\left(\frac{b^{2}}{c^{3}}\right)^{4}$

After you solve these, come up with some rules that you discover about how to take a power to a power.

2 ways to show $\left(a^{5}\right)^{2}$

Way 1
$\left(a^{5}\right)^{2}$
$=\left(a^{5}\right)\left(a^{5}\right)$
$=a^{10}$

Way 2
$\left(a^{5}\right)^{2}$
$=(a \cdot a \cdot a \cdot a \cdot a)^{2}$
$=(a \cdot a \cdot a \cdot a \cdot a)(a \cdot a \cdot a \cdot a \cdot a)$
$=a^{10}$

Taking a Power to a Power (Problems like $\left(a^{5}\right)^{2}$)

- Keep the base, multiply the exponents

What if there's a coefficient?

$$
\left(3 y^{4}\right)^{2}
$$

Predictions?

$=3 y^{4} \cdot 3 y^{4}$
$=3 \cdot y \cdot y \cdot y \cdot y \cdot 3 \cdot y \cdot y \cdot y \cdot y$
$=9 y^{8}$
What did we learn?
The coefficient goes to the power outside the parentheses, just like any normal number.

Taking a Power to a Power

- Keep the base, multiply the exponents

TREAT COEFFICIENTS AS A NORMAL NUMBERS. TAKE THEM TO THE POWER OF THE EXPONENT!!!

(The "pretend the variables aren't there" strategy)

- $5 p^{4}$ This coefficient is NOT connected to the 4 exponent
$\left(5 q^{2}\right)^{4}$
This coefficient IS connected to the 4 exponent

But the 5 is NOT connected to the
2 exponent

Examples

1. $\left(x^{2}\right)^{5}=\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)=x^{10}$
2. $\left(a^{4} b\right)^{2}=\left(a^{4} b\right) \cdot\left(a^{4} b\right)=a^{8} b^{2}$
3. $\left(2 m^{3}\right)^{4}=\left(2 m^{3}\right) \cdot\left(2 m^{3}\right) \cdot\left(2 m^{3}\right) \cdot\left(2 m^{3}\right)$

$$
=(2 \cdot m \cdot m \cdot m) \cdot(2 \cdot m \cdot m \cdot m) \cdot(2 \cdot m \cdot m \cdot m) \cdot(2 \cdot m \cdot m \cdot m)
$$

4. $\left(\frac{5 g^{50}}{6 h^{30}}\right)^{2} \quad\left(\frac{5 g^{5}}{6 h^{30}}\right)^{2}$

$$
=\frac{25 g^{100}}{36 h^{60}}
$$

Once again...
-WHEN IN DOUBT, EXPAND IT OUT!!!

EXIT TICKET

- Do these on a notecard. You may not get help from me, your classmates, or your notes.

1) $8 x^{4} \cdot 4 x^{8}$
2) $\frac{16 y^{7}}{8 y}$
3) $\left(3 z^{5}\right)^{3}$

Homework

Textbook p. 35 (2-10 even, 14, 20, 21, 22)

