Created by Mr. Lischwe

Warmup
$$1/(2^2)^2$$

1) If **a** = -3, **b** = 6, and **c** = -4, evaluate the expression.

$$a^3 - b^2 + 5c^2$$

2) Try to find values for **a** and **b** so that the equation $a^{b} = b^{a}$ is true. **A** and **b** may not be the same number.

Extra question:

Would you rather have 2⁴⁰ dollars or 40² dollars?
A) I would rather have 2⁴⁰ dollars.
B) I would rather have 40² dollars.
C) It doesn't matter, they're the same

p. 27 (1-6, 8, 14-18)

- 1) $(-6)^7$ 14) 22) $-24a^{10}$ 15) 93) $-35a^5b^5c^5$ 16) 44) 8^2 (or 64)17) 65) $2t^3$ 18) 5
- 6) $x^2 y^5$
- 8) $4^1 \cdot 5^1 \cdot 6^1$ or 120

Table of Contents (2nd Semester)

- p. 1 Exponent Basics (1.2)
- p. 2 Multiplying and Dividing Powers (1.3)
- p. 3 Power to a Power (1.4)

BACK TO THIS PAGE

2 ways to show $(a^5)^2$

 $\frac{Way 1}{(a^5)^2} = (a^5)(a^5) = a^{10}$

<u>Way 2</u> $(a^5)^2$ $= (a \cdot a \cdot a \cdot a \cdot a)^2$ $= (a \cdot a \cdot a \cdot a \cdot a)(a \cdot a \cdot a \cdot a \cdot a)$ $= a^{10}$

Taking a Power to a Power (Problems like $(a^5)^2$)

• Keep the base, multiply the exponents

What if there's a coefficient? $(3y^4)^2$

Predictions? = $3y^4 \cdot 3y^4$ = $3 \cdot y \cdot y \cdot y \cdot y \cdot 3 \cdot y \cdot y \cdot y$ = $9y^8$

What did we learn?

The coefficient goes to the power outside the parentheses, just like any normal number.

Taking a Power to a Power

• Keep the base, multiply the exponents

TREAT COEFFICIENTS AS A NORMAL NUMBERS. TAKE THEM TO THE POWER OF THE EXPONENT!!!

(The "pretend the variables aren't there" strategy)

• **5***p*⁴ This coefficient is NOT connected to the 4 exponent

• $(5q^2)^4$ This coefficient IS connected to the 4 exponent

But the 5 is NOT connected to the 2 exponent

Examples

1.
$$(x^2)^5 = (x^2) \cdot (x^2) \cdot (x^2) \cdot (x^2) \cdot (x^2) = x^{10}$$

2.
$$(a^4b)^2 = (a^4b) \cdot (a^4b) = a^8b^2$$

3.
$$(2m^3)^4 = (2m^3) \cdot (2m^3) \cdot (2m^3) \cdot (2m^3)$$

= $(2 \cdot m \cdot m \cdot m) \cdot (2 \cdot m \cdot m \cdot m) \cdot (2 \cdot m \cdot m \cdot m) \cdot (2 \cdot m \cdot m \cdot m)$
= $16m^{12}$
4. $(\frac{5g^{50}}{6h^{30}})^2 = (\frac{5g^{50}}{6h^{30}})^2 = \frac{25g^{100}}{36h^{60}}$

Super-Crazy Example

 $\frac{x^3 \cdot (x^5 \cdot x)^2}{x^4 \cdot (x^3)^5 \cdot x} \cdot \frac{\left(\left(x^3\right)^2\right)^2}{x}$

Once again...

• WHEN IN DOUBT, EXPAND IT OUT!!!

EXIT TICKET

• Do these on a notecard. You may not get help from me, your classmates, or your notes.

1)
$$8x^4 \cdot 4x^8$$

2) $\frac{16y^7}{8y}$
3) $(3z^5)^3$

Homework

Textbook p. 35 (2-10 even, 14, 20, 21, 22)