Created by Mr. Lischwe

Warmup $1 /\left(2^{2}\right)^{2}$

1) If $\mathbf{a}=-\mathbf{3}, \mathrm{b}=6$, and $\mathbf{c}=-4$, evaluate the expression.

$$
a^{3}-b^{2}+5 c^{2}
$$

2) Try to find values for \mathbf{a} and \mathbf{b} so that the equation $\boldsymbol{a}^{\boldsymbol{b}}=\boldsymbol{b}^{\boldsymbol{a}}$ is true. \mathbf{A} and \mathbf{b} may not be the same number.

Extra question:

- Would you rather have 2^{40} dollars or $4 \mathbf{0}^{2}$ dollars?
A) I would rather have 2^{40} dollars.
B) I would rather have 40^{2} dollars.
C) It doesn't matter, they're the same

$$
\begin{aligned}
& \text { p. } 27(1-6,8,14-18) \\
& \begin{array}{ll}
\text { 1) }(-6)^{7} & \text { 14) } 2 \\
\text { 2) }-24 a^{10} & \text { 15) } 9 \\
\text { 3) }-35 a^{5} b^{5} c^{5} & \text { 16) } 4 \\
\text { 4) } 8^{2}(\text { or 64) } & \text { 17) } 6 \\
\text { 5) } 2 t^{3} & \text { 18) } 5 \\
\text { 6) } x^{2} y^{5} &
\end{array}
\end{aligned}
$$

8) $\mathbf{4}^{\mathbf{1}} \cdot \mathbf{5}^{\mathbf{1}} \cdot \mathbf{6}^{\mathbf{1}}$ or $\mathbf{1 2 0}$

Table of Contents ($2^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Multiplying and Dividing Powers (1.3)
p. 3 Power to a Power (1.4)

BACK TO THIS PAGE

2 ways to show $\left(a^{5}\right)^{2}$

Way 2
$\left(a^{5}\right)^{2}$
$=(a \cdot a \cdot a \cdot a \cdot a)^{2}$
$=(a \cdot a \cdot a \cdot a \cdot a)(a \cdot a \cdot a \cdot a \cdot a$
$=a^{10}$

Taking a Power to a Power (Problems like $\left(a^{5}\right)^{2}$)

- Keep the base, multiply the exponents

What if there's a coefficient?

$$
\left(3 y^{4}\right)^{2}
$$

Predictions?

$=3 y^{4} \cdot 3 y^{4}$
$=3 \cdot y \cdot y \cdot y \cdot y \cdot 3 \cdot y \cdot y \cdot y \cdot y$
$=9 y^{8}$
What did we learn?
The coefficient goes to the power outside the parentheses, just like any normal number.

Taking a Power to a Power

- Keep the base, multiply the exponents

TREAT COEFFICIENTS AS A NORMAL NUMBERS. TAKE THEM TO THE POWER OF THE EXPONENT!!!

(The "pretend the variables aren't there" strategy)
-510^{4} This coefficient is NOT connected to the 4 exponent

- $\left(5 q^{2}\right)^{4}$

This coefficient IS connected to the 4 exponent

But the 5 is NOT connected to the
2 exponent

Examples

1. $\left(x^{2}\right)^{5}=\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)=x^{10}$
2. $\left(a^{4} b\right)^{2}=\left(a^{4} b\right) \cdot\left(a^{4} b\right)=a^{8} b^{2}$
3. $\left(2 m^{3}\right)^{4}=\left(2 m^{3}\right) \cdot\left(2 m^{3}\right) \cdot\left(2 m^{3}\right) \cdot\left(2 m^{3}\right)$ $=(2 \cdot m \cdot m \cdot m) \cdot(2 \cdot m \cdot m \cdot m) \cdot(2 \cdot m \cdot m \cdot m) \cdot(2 \cdot m \cdot m \cdot m)$
4. $\left(\frac{5 g^{50}}{6 h^{30}}\right)^{2} \quad\left(\frac{5 g^{5} 0}{6 h^{30}}\right)^{2}$ $=16 \mathrm{~m}^{12}$
$=\frac{25 g^{100}}{36 h^{60}}$

Super-Crazy Example

$$
\frac{x^{3} \cdot\left(x^{5} \cdot x\right)^{2}}{x^{4} \cdot\left(x^{3}\right)^{5} \cdot x} \cdot \frac{\left(\left(x^{3}\right)^{2}\right)^{2}}{x}
$$

Once again...

- WHEN IN DOUBT, EXPAND IT OUT!!!

EXIT TICKET

- Do these on a notecard. You may not get help from me, your classmates, or your notes.

1) $8 x^{4} \cdot 4 x^{8}$
2) $\frac{16 y^{7}}{8 y}$
3) $\left(3 z^{5}\right)^{3}$

Homework

Textbook p. 35 (2-10 even, 14, 20, 21, 22)

