Warmup 3/\# of years it takes for a leap year to happen) + $6 \quad$ Created by Hanan J.

Get a calculator but DO NOT use it for this warmup!!! Also get a whiteboard, marker, eraser ***Please find your warmup sheet from LAST WEEK. We only did Monday. Today, we will continue with Tuesday!*** Calculate all without a calculator. Write all answers in scientific notation.
$\begin{array}{r}7000000 \\ -\begin{array}{r}300060\end{array} \\ \hline 6700006\end{array}$

1) $\frac{\left(8 \times 10^{30}\right)}{\left(4 \times 10^{26}\right)}$
2) $\left(2.5 \times 10^{6}\right)\left(7 \times 10^{3}\right)$
3) $\left(7 \times 10^{6}\right)-\left(3 \times 10^{5}\right)$
17.5×10^{9}

mathwarehouse.com/gifs

If you did not have your "TV" worksheet, but you have it today...

- Please turn it in right now!

Honorable Mentions: 3/2

- Bryan N: $(1)^{(1)^{(1)^{(1)(1)(1)}}} \times 2$
- Anja K: $\mathbf{1}^{\mathbf{0}}+\mathbf{1}$
- Cayden L: $(4!\div 3) \div 4$
- Hanan J: (\# of days so far in 2020) - 60
- Johnathan S: \# of times Obi-Wan Kenobi has said "Hello there" in all Star Wars movies

Honorable Mentions: 3/3

- Saoirse G: $\left(\left((3)^{5}\right)^{6}\right)^{21} \times 0+3$
- Kara S: $(0,3)$ without the comma or parentheses
- Ania R: $((((3+3) \div 3)+4) \div 3)+1$
- Josephine M: 7 months away from Mr. Lischwe's birthday

Honorable Mentions: 3/4

- Byran N: The number of bathroom passes you get
- Hanan J: \# of years it takes for a leap year to happen
- Reily G: Fraction equal to 9/12
- Leilani M: $|-2+(-2)|$

ON YOUR WHITEBOARD:

1. Find x. Show your work, even what you type into the calculator!!!

$$
\begin{gathered}
15^{2}+29^{2}=x^{2} \\
1066=x^{2} \\
\sqrt{1066}=x \\
32.6497 \approx x
\end{gathered}
$$

$$
\begin{aligned}
32.6497^{2}+x^{2} & =60^{2} \\
1066+x^{2} & =3600 \\
x^{2} & =2534 \\
x & \approx 50.3
\end{aligned}
$$

Table of Contents (2 ${ }^{\text {nd }}$ Semester)
p. 1 Exponent Basics (1.2)
p. 2 Zero and Negative Exponents (1.5)
p. 3 Multiplying and Dividing Powers (1.3)
p. 4 Power to a Power (1.4)
p. 5 Scientific Notation (1.6)
p. 6 Calculating with Scientific Notation (1.7)
p. 7 Angle Basics
p. 8 Angles formed by Parallel Lines
p. 9 Angle Sums of a Triangle (Guided)
p. 10 Transformations (6.1-6.3)
p. 11 Rotations (Handout)
p. 12 Reverse Transformations (Guided)
p. 13 Pythagorean Theorem

Common Pythagorean Triples

-3, 4, 5
-5, 12, 13
-8, 15, 17
-7, 24, 25
-9, 40, 41

- MEMORIZE THESE!!! (It will pay off!)

If $3,4,5$ works...

- What can you do with the numbers to create a similar triangle? (Different size but same angles)

-3, $4,5 \longrightarrow 6,8,10$
$\cdot 3,4,5 \longrightarrow 9,12,15$
$\cdot 3,4,5 \longrightarrow 18,24,30$
$\cdot 3,4,5 \longrightarrow \mathrm{x} 100 \longrightarrow 300,400,500$

Common Pythagorean Triples

-3, 4, 5
-5, 12, 13
-8, 15, 17
-7, 24, 25
-9, 40, 41

- + Any multiple of these!!!
-For example: $(6,8,10)$ or $(9,12,15)$ or (50, 120, 130)

Find the length of the side!

Find the length of the side!

$(8,15,17)$
$\downarrow \times 10$

Find the length of the side!

$(9,40,41)$
$\downarrow \times 2$
($18,80,82$)
18 cm

82 cm

Find the length of the side!

1200 in

Find the length of the side!

(3,45)
$\downarrow \times 5$

20 ft

Find the length of the side!

Find the length of the side!

> TRICK: cannot use $(3,4,5)$
> 5 must be hypotenuse

$$
\begin{gathered}
3^{2}+5^{2}=x^{2} \\
34=x^{2} \\
5.8 \approx x
\end{gathered}
$$

3 in

Find the length of the side!

12 m
 5 m
 X
 NOI 13

How do I show work?

- If you have some of these Pythagorean Triples memorized, you can use this knowledge in place of working out the math. However you MUST say "Pythagorean Triple" or "Pyth. Triple" or something like that so that I know your thought process.

So you could write...

QUESTION....

- How many miles is it DIRECTLY from Nashville to Memphis? (As the crow flies)

Table of Contents (2 ${ }^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Zero and Negative Exponents (1.5)
p. 3 Multiplying and Dividing Powers (1.3)
p. 4 Power to a Power (1.4)
p. 5 Scientific Notation (1.6)
p. 6 Calculating with Scientific Notation (1.7)
p. 7 Angle Basics
p. 8 Angles formed by Parallel Lines
p. 9 Angle Sums of a Triangle (Guided)
p. 10 Transformations (6.1-6.3)
p. 11 Rotations (Handout)
p. 12 Reverse Transformations (Guided)
p. 13 Pythagorean Theorem
p. 14 Distance on the Coordinate Plane (Guided)

Distance on the Coordinate Plane

Objectives:

- Find the distance between any two points on the coordinate plane:
- Horizontally
- Vertically
- Diagonally

How far are these points from each other???

How far are these points from each other???

How far are these points from each other???

$$
3^{2}+2^{2}=x^{2}
$$

Activity: Estimating Distances

For each one:

- Draw the two points
- ESTIMATE the distance, in cm, between the points.
- Measure the actual distance to the nearest tenth of a centimeter.

1. $(1,23)$ and $(5,21)$
2. $(9,17)$ and $(17,23)$
3. $(1,15)$ and $(2,10)$
4. $(11,11)$ and $(15,15)$
5. $(2,7)$ and $(18,0)$

HW: p. 415 (1-6, 12)
p. 435 (1-4)
-DUE THURSDAY

