Warmup $2 /\left(\mathbf{4}^{2}+\sqrt{4}+4^{0}\right)$

PLEASE GET A WHITEBOARD, MARKER, ERASER!!!

Use the arithmetic recursive rule to find the first five terms:

$$
\begin{aligned}
& a_{1}=19 \\
& a_{n}=a_{n-1}-11
\end{aligned}
$$

Domain:

$$
-1 \leq x \leq 7
$$

$$
19,8,-3,-14,-25
$$

$$
\text { Range: }-1 \leq y \leq 4
$$

Find the slope between:

$$
(-5,-4) \text { and }(-4,-5)
$$

$$
\frac{-5--4}{-4--5}=\frac{-1}{1}=-1
$$

Solve the equation for a

$$
\begin{aligned}
& \frac{2}{5}(-10 a+5 b)=d \\
& -4 a+2 b=d \\
& -2 b-2 b \\
& \frac{-4 a}{-4}=\frac{d}{-4} \frac{-2 b}{-4}
\end{aligned}
$$

4.

$$
\begin{aligned}
& 81^{\circ}+68^{\circ}+\mathrm{m} \angle F=180^{\circ} \\
& \mathrm{m} \angle F=31^{\circ}
\end{aligned}
$$

None of the angles in $\triangle D E F$ has a measure of 33°. So, $\triangle D E F$ is not congruent to $\triangle A B C$.

Determine whether the triangles are congruent. Explain your reasoning.
5.

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{~S}+90^{\circ}+58^{\circ}=180^{\circ} \\
& \mathrm{m} \angle S=32^{\circ}
\end{aligned}
$$

None of the angles in \triangle STIl bas a measure of 34°. So, $\triangle S T U$ is not congruent to $\triangle P Q R$.
6.

$\mathrm{m} \angle L M K+\mathrm{m} \angle K+\mathrm{m} \angle M L K=180^{\circ}$
$163^{\circ}+\mathrm{m} \angle M L K=180^{\circ}$, so $\mathrm{m} \angle K L M=17^{\circ}$
$\mathrm{m} \angle J M L=\mathrm{m} \angle K M L$, so $\angle J M L \cong \angle K M L$; $\overline{M L} \cong \overline{M L}$ by the Reflexive Property of Congruence; $\mathrm{m} \angle M L J=\mathrm{m} \angle M L K$, so $\angle M L J \cong \angle M L K . \angle J M L$ and $\angle M L J$ include side $\overline{M L}$, and $\angle K M L$ and $\angle M L K$ include side $\overline{M L}$. Therefore $\triangle J M L \cong \triangle K M L$ by the ASATriangle Congruence Theorem.

$$
\text { or } A A S
$$

Congruent, by AAS Congruence
3.

2.

Congruent, by AAS Congruence

Congruent, by ASA Congruence
5.

Cannot be determined.
4.

Cannot be determined.
6.

Congruent, AAS Congruence
7.

$\overline{A B} \cong \overline{D E}$, or $\overline{B C} \cong \overline{E F}$

What is the difference?

$\underbrace{\text { congmenent }}$
not necessarily
congruent congruent

- https://www.khanacademy.org/math/geometry/congruence /triangle-congruence/v/more-on-why-ssa-is-not-apostulate

On your whiteboards...

- Can the triangles be proved congruent? (Yes or No)
- State the reason (SSS, ASA, AAA, etc.)
- We will hold them up ALL AT ONCE.

SSS, SAS, ASA, AAS, HL or none?

congruent
(ASA)

SSS, SAS, ASA, AAS, HL or none?

congruent

SSS, SAS, ASA, AAS, HL or none?

SSS, SAS, ASA, AAS, HL or none?

Congrment
(AAS)

SSS, SAS, ASA, AAS, HL or none?

SSS, SAS, ASA, AAS, HL or none?

For 1-4, say which congruence shortcut you can use. If none, write none!

- Sometimes, there is more information than what is given in the diagram...

What can you add to the diagram?
State the reason.

$\overline{B D} \cong \overline{B D} \quad \begin{gathered}\text { (Reflexive } \\ \text { Property) }\end{gathered}$

What can you add to the diagram? State the reason.

What can you add to the diagram? State the reason.

C is the midpoint of segment BD.

$$
\overline{B C} \cong \overline{D C} \quad \text { (Definition of midpoint) }
$$

What can you add to the diagram? State the reason.

H
$\overline{\mathrm{FH}}$ bisects angle GHI.

- $\angle G H F \cong \angle I H F$
(Def. of angle bisector)
- $\overline{\mathrm{FH}} \cong \overline{\mathrm{FH}}$ (Reflexive $)$

What can you add to the diagram? State the reason.

$\overline{J M} \cong \overline{L M}$
M is the midpoint of \uparrow and $(N K) ~ \overparen{N M} \cong K$
Also $\angle J M K \cong$
CLMN
(vertial Angles)

What can you add to the diagram? State the reason.

$\angle K J L \cong \angle M L J$ (Alternate Interior)
$\bar{\pi} \simeq \bar{\pi}$ (Reflexive)

What's the difference between a proof and what we have been doing?

- In a proof, you must justify each step.
- You need to state what you know, and why you know it.

Prove: $\triangle A B C \cong \triangle E D C$
 C
 Which one do you want to see first?
 - Paragraph proof
 - Two-column proof
 - Flow-chart proof

Paragraph Proof

- Just write, using complete sentences, a logical argument that proves what you want to prove. For everything you state, you must say how you know it.

Paragraph Proof
 - Prove: $\triangle A B C \cong \triangle E D C$

- We know $\overline{A B} \cong \overline{E D}$ because it is given. We also know that $\angle A \cong \angle E$ because it is given. In addition, $\angle B C A \cong$ $\angle D C E$ because they are vertical angles. Thus, $\triangle A B C \cong$ $\triangle E D C$ by AAS.
-

Two-Column Proof

- Organizes your proof into columns. One column is for your statements, and the other one is for your reasons. The last statement will always be the one you are trying to prove.

Two-Column Proof
 - Prove: $\triangle A B C \cong \triangle E D C$

Statement
A 1) $\angle A \cong \angle E$
A 2) $\angle B C A \cong \angle D C E$
S 3) $\overline{\overline{A B}} \cong \overline{E D}$
4) $\triangle A B C \cong \triangle E D C$

Reason

1) Given
2) Vertical Angles Thm.
3) Given
4) AAS

Flow Chart Proof

- A visual depiction of your proof. Each "bubble" will have a statement and a reason in it. You draw arrows to show which statements lead to which other statements.

Flow-Chart Proof
 - Prove: $\triangle A B C \cong \triangle E D C$

Given: K is the midpoint of \bar{L}.
Prove: $\triangle J K M \cong \triangle L K M$

Two-Column Proof

Given: K is the midpoint of \bar{L}. Prove: $\Delta J K M \cong \Delta L K M$

1) Reflexive Property
2) $\angle J K M \cong \angle L K M$

K is the
3) midpoint of \bar{J}
2) Given
3) Given
4) $\overline{J K} \cong \overline{L K}$
5) $\Delta J K M \cong \triangle L K M$
5) SAS

Flow-Chart Proof

 Given: K is the midpoint of \bar{L}. Prove: $\triangle J K M \cong \triangle L K M$

Given:
K is the midpoint of $\overline{J L}$

Given:
$\angle J K M \cong \angle L K M$
$\Delta J K M \cong \Delta L K M$

On your giant whiteboards, write a proof:
Given: $\overline{A B} \| \overline{D E}$
Prove: $\triangle A B C \cong \triangle E D C$

On your giant whiteboards, write a proof:

Given: $\overline{Q R}$ bisects $\angle P Q S$. Prove: $\triangle P Q R \cong \triangle S Q R$

On your giant whiteboards, write a proof:

 Prove: $\Delta W X Y \cong \Delta Y Z W$

Homework

- Worksheet

