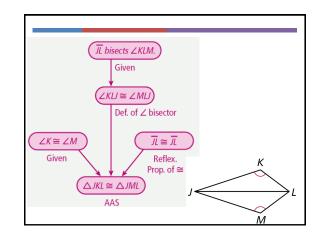
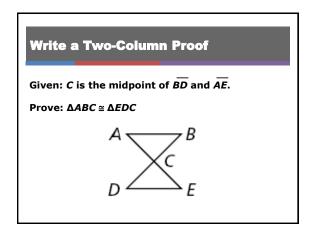
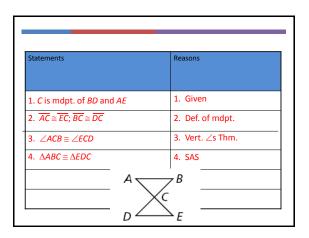
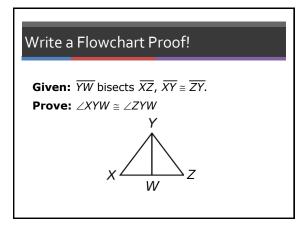
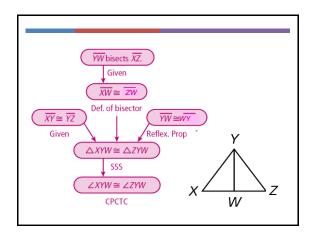

Two-Colum Given: K is the mid Prove: $\Delta JKM \cong \Delta L$	Ipoint of JL.
Statement	Reason K K
1) <u><i>MK</i></u> ≅ <u><i>MK</i></u>	1) <u>Reflexive Property</u>
2) $\angle JKM \cong \angle LKM$	2)
K is the 3) midpoint of JL	3)
4) $\underline{JK} \cong \overline{LK}$	4) <u>Definition of midpoint</u>
5) <u>ΔJKM ≅ ΔLKM</u>	5) <u>SAS</u>

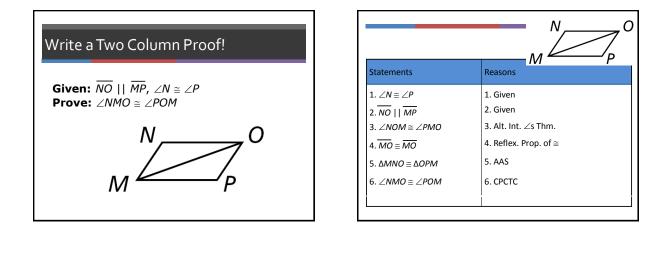


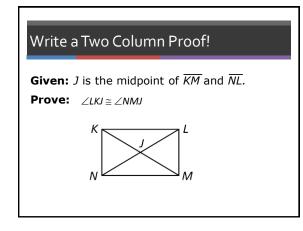


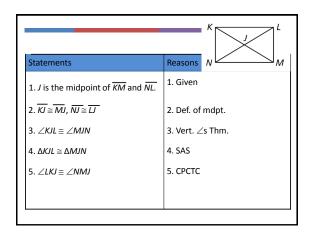


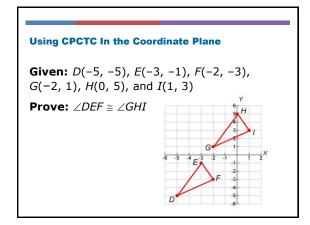


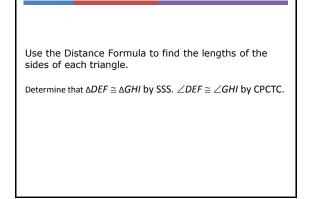

Write a Two-Column Proof!				
Given: $\overline{BC} \overline{AD}, \overline{BC} \cong \overline{AD}$ Prove: $\triangle ABD \cong \triangle CDB$ B C D C D				
Statements	Reasons			
1. $\overline{BC} \cong \overline{AD}$	1. Given	7		
2. BC / / AD	2. Given			
3. ∠CBD \cong ∠ABD	3. Alt. Int. ∠s Thm.			
4. $\overline{BD} \cong \overline{BD}$	4. Reflex. Prop. of \cong			
5. $\triangle ABD \cong \triangle CDB$	5. SAS			

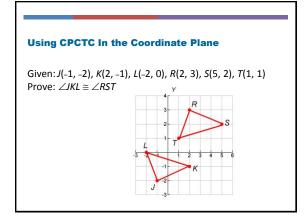

Write a Two	-Column Proo	f
Given: \overrightarrow{QP} bised Prove: $\Delta RQP \cong$	tts ∠RQS. QR ≅ QS ΔSQP	Q A
Statements	Reasons	
1. <i>QR</i> ≅ <i>QS</i>	1. Given	$R \sim S$
2. QP bisects ∠RQS	2. Given	
3. ∠RQP \cong ∠SQP	3. Def. of angle bisector	
4. $\overline{QP} \cong \overline{QP}$	4. Reflex. Prop. of \cong	
5. $\Delta RQP \cong \Delta SQP$	5. SAS	

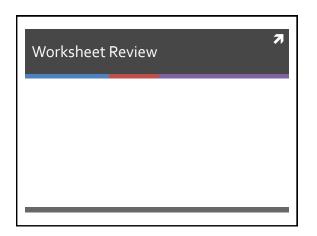

<u>CPCTC</u> is an abbreviation for the phrase "Corresponding Parts of Congruent Triangles are Congruent." It can be used as a justification in a proof after you have proven two triangles congruent.


Remember! SSS, SAS, ASA, AAS, and HL use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent.









Use the Distance Formula to find the lengths of the sides of each triangle.
Determine that $\Delta JKL \cong \Delta RST$ by SSS. $\angle JKL \cong \angle RST$ by CPCTC.

