Created by Mr. Lischwe

Warmup $2 /(\sqrt{49} \cdot \sqrt[3]{27})$

Hungry Horace has bought a large doughnut to share with his friends at a party.
The doughnut has a hole in it as shown.
Horace has invited eight people to his house, including Greedy Graham, Fat Freda and Tiny Tina.
Fortunately, none of Horace's friends mind how much they get, as long as they get something.
How can Horace cut the doughnut into nine pieces USING AS FEW STRAIGHT CUTS AS POSSIBLE?

QUIZ TUESDAY

ALL TRIANGLE CONGRUENCE SHORTCUTS AND PROOFS

THREE TYPES OF PROOFS:

PARAGRAPH PROOFS
 TWO-COLUMN PROOFS
 FLOW-CHART PROOFS

YOU MUST KNOW ALL THREE TYPES

Check Homework

Given: C is the midpoint of $\overline{B D}$ and $\overline{A E}$.
Prove: $\triangle A B C \cong \triangle E D C$

Statements	Reas
1. C is mdpt. of $B D$ and $A E$	1. Given
2. $\overline{A C} \cong \overline{E C}$	2. Def. of mdpt.
3. $\overline{B C} \cong \overline{D C}$	3. Def. of mdpt.
4. $\angle A C B \cong \angle E C D$	4. Vert. $\angle \mathrm{s}$ Thm.
5. $\triangle A B C \cong \triangle E D C$	5. SAS

Given: $\overline{B C} \| \overline{A D}, \overline{B C} \cong \overline{A D}$
Prove: $\triangle A B D \cong \triangle C D B$

Statements	Reasons
1. $\overline{B C} \cong \overline{A D}$	1. Given
2. $\overline{B C} / / \overline{A D}$	2. Given
3. $\angle C B D \cong \angle A B D$	3. Alt. Int. \angle s Thm.
4. $\overline{B D} \cong \overline{B D}$	4. Reflex. Prop. of \cong
5. $\triangle A B D \cong \triangle C D B$	5. SAS

Given: $\overrightarrow{Q P}$ bisects $\angle R Q S . \overline{Q R} \cong \overline{Q S}$

Prove: $\triangle R Q P \cong \triangle S Q P$

Statements	Reasons
1. $\overline{Q R} \cong \overline{Q S}$	1. Given
2. $\overrightarrow{Q P}$ bisects $\angle R Q S$	2. Given
3. $\angle R Q P \cong \angle S Q P$	3. Def. of angle bisector
4. $\overline{Q P} \cong \overline{Q P}$	4. Reflex. Prop. of \cong
5. $\triangle R Q P \cong \triangle S Q P$	5. SAS

Write a Flowchart Proof!

Given: $\overline{Y W}$ bisects $\overline{X Z}, \overline{X Y} \cong \overline{Z Y}$. Prove: $\angle X Y W \cong \angle Z Y W$

$\overline{Y W}$ bisects $\overline{X Z}$.
Given
$\overline{X W} \cong \overline{Z W}$
$\overline{X Y} \cong \overline{Y Z}$
Given

CPCTC is an abbreviation for the phrase "Corresponding Parts of Congruent Triangles are Congruent." It can be used as a justification in a proof after you have proven two triangles congruent.

Remember!

SSS, SAS, ASA, AAS, and HL use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent.

Write a Two Column Proof!

Given: $\overline{N O} \| \overline{M P}, \angle N \cong \angle P$
 Prove: $\angle N M O \cong \angle P O M$

Statements

1. $\angle N \cong \angle P$
2. $\overline{N O} \| \overline{M P}$
3. $\angle N O M \cong \angle P M O$
4. $\overline{M O} \cong \overline{M O}$
5. $\triangle M N O \cong \triangle O P M$
6. $\angle N M O \cong \angle P O M$

Reasons

1. Given
2. Given
3. Alt. Int. $\angle \mathrm{s}$ Thm.
4. Reflex. Prop. of \cong
5. AAS
6. CPCTC

CPCTC

7 Triangles have 6 "parts" (sides \& angles)
7. You need THREE of these to prove the triangles are congruent π (SSS, SAS, ASA, AAS, Right Angles + HL)
7. Once you prove the triangles are congruent, the triangle becomes "unlocked" - the other three "parts" that you didn't already know are congruent are now automatically congruent.

Write a PARAGRAPH Proof!!!

Given: J is the midpoint of $\overline{K M}$ and $\overline{N L}$.
Prove: $\angle L K J \cong \angle N M J$

1. J is the midpoint of $\overline{K M}$ and $\overline{N L}$.
2. Given
3. $\overline{K J} \cong \overline{M J}, \overline{N J} \cong \overline{L J}$
4. Def. of mdpt.
5. $\angle K J L \cong \angle M J N$
6. $\Delta K J L \cong \triangle M J N$
7. $\angle L K J \cong \angle N M J$

Reasons

Statements	Reasons
1. J is the midpoint of $\overline{K M}$ and $\overline{N L .}$	1. Given
2. $\overline{K J} \cong \overline{M J}, \overline{N J \cong \overline{L J}}$	2. Def. of mdpt.
3. $\angle K J L \cong \angle M J N$	3. Vert. $\angle \mathrm{s} \mathrm{Thm}$.
4. $\Delta K J L \cong \triangle M J N$	4. SAS
5. $\angle L K J \cong \angle N M J$	5. CPCTC

Write a flow chart Proof

Given: $\overline{A C} \cong \overline{E C}$ and $m \| n$
Prove: $\triangle A B C \cong \triangle E D C$

Alt. Int $\&$ Thm.

Write a Paragraph Proof

Given: $\angle A B C \cong \angle D E F, \overline{B C} \| \overline{E F}, \overline{A C} \cong \overline{D F}$.

Prove: triangle ABC is congruent to triangle DEF

Because $\overline{B C}$ is parallel to $\overline{E F}$, this means that $\angle A C B$ is congruent to $\angle D F E$, using the Corresponding Angles Theorem. Since $\angle A B C$ is congruent to $\angle D E F$ and $\overline{A C}$ is congruent to $\overline{D F}$, then one pair of corresponding angles and two pairs of non-included corresponding sides are congruent. This means that $\triangle A B C$ is congruent to $\triangle D E F$ using the AAS Triangle Congruence Theorem.

Homework

7 Finish Worksheet

