Warmup 3/(The \# of points Tennessee was leading

 by before they almost blew it against lowa)
MAKE SURE YOU HAVE A WHITEBOARD!

Find the volume of each figure. Try to do it without looking at your notes, but you can look at them if you must.

1b)

Table of Contents (2 ${ }^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Multiplying and Dividing Powers (1.3)
p. 3 Power to a Power (1.4)
p. 4 Zero \& Negative Exponents (1.5)
p. 5 Scientific Notation (1.6)
p. 6 Calcluating with Scientific Notation (1.7)
p. 7 Angle Basics
p. 8 Angles formed by Parallel Lines (5.1)
p. 9 Transformations (6.1-6.3)
p. 10 Rotations (Handout)
p. 11 Reverse Transformations
p. 12 Pythagorean Theorem
p. 13 Distance on the Coordinate Plane (handout)
p. 14 Review: Circles
p. 15 Volume of Prisms and Cylinders
p. 16 Volume of Cones, Spheres, and Pyramids

We just learned....

- The volume of a cone is $1 / 3$ of the volume of the cylinder with the same base (radius) and height.

What about a sphere???

- The volume of a sphere is of the volume of the cylinder with the same radius and height.

The answer...

- The volume of a sphere is TWO-THIRDS of the volume of the cylinder with the same radius and height.

Volume of a sphere

- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot h\right)$
- But...
- In a sphere, what is another way of saying the "height"?

Volume of a sphere

- "Height" of a sphere $=$ diameter $=2 \cdot$ radius
- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot \boldsymbol{h}\right)$
- $V($ sphere $)=\frac{2}{3}\left(\pi r^{2} \cdot 2 r\right)$
- $V($ sphere $)=\frac{2}{3} \cdot 2 \cdot \pi r^{2} \cdot r$
- $V($ sphere $)=\frac{4}{3} \pi r^{3}$

Volume of a sphere

Volume of a Sphere:

- $V=\frac{4}{3} \pi r^{3}$

Drawing a sphere

- It's hard to draw a sphere, because when you do, it just looks like a circle.
- One way around this is to draw in the circle around the middle (like the "Equator")

Find the volume:

- Round to the nearest tenth.

$$
\begin{gathered}
V=\frac{4}{3} \pi r^{3} \\
V=\frac{4}{3} \pi(9)^{3} \\
V=972 \pi \mathrm{~cm}^{3} \\
V \approx 3053.6 \mathrm{~cm}^{3}
\end{gathered}
$$

Question...

- What is a half of a sphere called???
- A hemisphere

- To find the area of a hemisphere, just use the formula for sphere, then divide it by 2.
- (Or you can use the formula $V=\frac{2}{3} \pi r^{3}$)

Add p. 609 to the homework...

SHOW ALL WORK ON A SEPARATE SHEET OF PAPER!!!

- p. 593 (1-4)
- p. $601(5-8)$
op. $609(2,7,8)$

HW Answers: p.593,601,609

p. 593	p. 601	p. 609
1) $141.4 \mathrm{in}^{3}$	5) $102.6 \mathrm{in}^{3}$	2) $904.8 \mathrm{yd}^{3}$
2) $103.4 \mathrm{~m}^{3}$	6) $15.9 \mathrm{~m}^{3}$	7) Volume is $268.1 \mathrm{in}^{3}$
3) 834.1 lb	7) $1608.5 \mathrm{~cm}^{3}$	107.2 seconds
(If you rounded before multiplying by 59 , its 831.9 lb)	8) $1338.3 \mathrm{~cm}^{3}$	8) $658.5 \mathrm{ft}^{3}$
4) $2580.3 \mathrm{~cm}^{3}$		

DIFFERENCE BETWEEN CYLINDERS \& CONES

- Cylinders go from CIRCLE to CIRCLE.
- Cones go from a CIRCLE to a POINT.

DIFFERENCE BETWEEN PRISMS \& PYRAMIDS

- Prisms go from BASE to BASE.

- Pyramids go from a BASE to a POINT.

Pyramids

- The same thing happens with rectangular prisms and pyramids.

Any pyramid: Volume is $1 / 3$ of the prism with the same base and height

Rectangular or Square Pyramid: $V=\frac{l w h}{3}$

Which shape is it???

Triangluar Prism
(Area of triangle times height of prism)

Square Pyramid (Area of square times height of pyramid)

Find the volume:

$$
\begin{aligned}
& \text { Volume }=\frac{l w h}{3} \\
& \text { Volume }=\frac{10 \cdot 10 \cdot 18}{3}
\end{aligned}
$$

$$
\text { Volume }=600 \mathrm{~cm}^{3}
$$

REMEMBER, PYRAMIDS ARE JUST LIKE CONES
Cone $=1 / 3$ of a cylinder Pyramid $=1 / 3$ of a prism

WHITEBOARDS!!!

Find the volume:

