Warmup 3/(\# of years ago Lorde made
Royals)

1) Solve:

2) Your friend set up the problem like $\mathbf{8}^{2}+\mathbf{1 7}^{\mathbf{2}}=\boldsymbol{x}^{2}$. What would you say to help your friend understand what to do instead?
3) Remembering the $\mathbf{1 8 0}$ rule for triangles...why don't the three numbers from the problem in \#1 add up to 180 ?
TURN IN WARMUPS

ADVICE: (For ALL of math, not just this unit!)

- Do not round your answers until the END of the problem.

TURN IN WARMUPS

One more (don't need to write)

- Which of these is a reasonable estimate for the third side?

A. 14
B. 27
C. 49
D. 62

ADVICE: (For ALL of math, not just this
unit!)
- Do not round your answers until the END of the problem.

Common Pythagorean Triples

- $3,4,5$
- 5, 12, 13
- $8,15,17$
- 7, 24, 25
- MEMORIZE THESE!!! (It will pay off!)

If $3,4,5$ works...
Could you tell me the lengths of the sides of a triangle that would be similar to this triangle?

Common Pythagorean Triples

-3, 4, 5

- 5, 12, 13
- $8,15,17$
- 7, 24, 25
- + any multiple of these!

Find the length of the side!

How do I show work?

- If you have some of these Pythagorean Triples memorized, you can use this knowledge in place of working out the math. However you MUST say "Pythagorean Triple" or "Pyth. Triple" or something like that so that I know your thought process.

So you could write...

RAISE YOUR HAND...

- If you can tell me a square number
- You may not say one that someone else has already said.

When not knowing math can cost you \$15,000...

- https://www.youtube.com/watch?v=BbX44YSsQ2|

Today: Pythagorean Theorem

Applications

- Real-world situations where the Pythagorean Theorem is used
- Still on the "Pythagorean Theorem" page of notes

Application - Ladders

- A 15-foot ladder is propped up against a 15 -foot building. When laid flat against the building, it looks like this:
- If the bottom of the ladder was moved OUT 4 feet, what would happen? How far below the top of the building would the ladder go?

Application: Ladders

1. A 15-foot ladder is propped up against a 15 foot-tall building. The bottom of the ladder is 4 feet from the building. How high up the building does the ladder reach? Draw a picture and use it to solve!
2. If you want to position the ladder so that it will exactly reach a window whose windowsill is 2 feet from the top of the building, how far from the building would you have to position the bottom of the ladder?
3. CHALLENGE/Early Finisher: How far away from the building does the bottom have to be so that the distance from the ladder to the building is the same as the distance from the ground up to the top of the ladder? (Also, does this seem safe?)

Application: TV's

- Carly bought a 32 inch TV.

- However, when she measured the length, she found that it was only 28 inches.
- What's the deal???

Application: TV's

- TV's are actually measured by the length of their diagonal.
- If Carly's 32-inch TV was only 28 inches long, how tall was it?

$$
\approx 15.5 \mathrm{in}
$$

- Steven also bought a 32-inch TV, but his was only 25.6 inches long. How tall was his? 19.2 in
- Whose TV has a greater AREA?

Carly: $\approx 433.8 \mathrm{in}^{2} \quad$ Steven: $=491.52 \mathrm{in}^{2}$

Homework:

"Measuring Your TV" Sheet

- Go home and find out what size TV you have. Hopefully, your parents will remember, or you can find the box or something.
- Measure the length and width of the TV, then check the math to see if you get the right diagonal length.
- + ALEKS

