Warmup $2 /\left(\right.$ The $2^{\text {nd }}$ perfect number)

Get a calculator. Yellow or blue - doesn't matter

Think of at least 2 "create a date" problems (see warmup sheet)

Go over homework

1) ABCDEFGHIJKLMNOPQRSTUVWXYZ
2) $\mathrm{H}, \mathrm{I}, \mathrm{N}, \mathrm{O}, \mathrm{S}, \mathrm{X}, \mathrm{Z}$
3) $0, X$
4) A, H, I, M, O, T, U, V, W, X, Y
5) B, C, D, E, H, I, K, O, X
6) $\mathrm{M} \rightarrow \mathrm{W}, \mathrm{b} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}, \mathrm{u} \rightarrow \mathrm{n}$

Go over homework

7) Some examples:

- BED
- HIKE
- CHECKBOOK
- EXCEEDED
- KICKBOXED

8) Some examples:

- TOT, WOW, MOM, YAY

9) Some examples:

- NOON
- pod
- suns

MOW

- swims
- ipod!

Angles Quiz Retake deadline...

- Is Tuesday!!!
- You should turn corrections in by Monday

Table of Contents ($\mathbf{2}^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Zero and Negative Exponents (1.5)
p. 3 Multiplying and Dividing Powers (1.3)
p. 4 Power to a Power (1.4)
p. 5 Scientific Notation (1.6)
p. 6 Calculating with Scientific Notation (1.7)
p. 7 Angle Basics
p. 8 Angles formed by Parallel Lines
p. 9 Angle Sums of a Triangle (Guided)
p. 10 Transformations (6.1-6.3)
p. 11 Rotations (Handout)
p. 12 Reverse Transformations (Guided)
p. 13 Pythagorean Theorem

Pythagorean Theorem

Objective:

- Use the Pythagorean Theorem to find sides of a right triangle

Estimate how many feet are between home plate

 and second base on a baseball field. The bases are 90 feet apart.

Question:

- If you walk from corner to corner of a field that is exactly 1 mile by 1 mile, how many miles did you walk?

Question:

- Why is something to the second power called "squared"? (There is an actual reason, besides "They just randomly decided to use that word.")

Video

- You are going to watch a video: https://www.youtube.com/watch?v=CAkMUd eB06o
- After the video, we will discuss what is happening in it!

PYTHAGOREAN THEOREM

- In a right triangle,

$$
a^{2}+b^{2}=c^{2}
$$

- \mathbf{a} and \mathbf{b} are the legs (the two sides connected to the right angle)
- \mathbf{c} is the hypotenuse (the longest side, always across from the right angle)

NOTE: It doesn't matter which leg is a and which is \mathbf{b}; you will get the same answer either way)

Example 1: Finding the Hypotenuse

- $a^{2}+b^{2}=c^{2}$
- $8^{2}+6^{2}=x^{2}$
- $64+36=x^{2}$
- $100=x^{2}$
- $\sqrt{\mathbf{1 0 0}}=x$
- $10=x$

Write the equation.
Substitute in the side lengths.
Square the numbers.
Add.
Square root both sides. (Think: what times itself equals 100?)
The missing side length is 10. Now LOOK BACK at your triangle to make sure your answer is reasonable!

Example 2: Finding a Leg

- $a^{2}+b^{2}=c^{2}$
- $7^{2}+x^{2}=12^{2}$
- $49+x^{2}=144$
- $\mathrm{x}^{2}=95$
- $x=\sqrt{95}$ (Exact)
- $x \approx 9.7$ (Rounded)

You can round your answer to the nearest tenth. Now LOOK BACK at your triangle to make sure your answer is reasonable!

Unless I tell you otherwise...

- I would like you to round to the nearest tenth. This is to help you see if your answer is reasonable.
- However, if I ask for an "exact" answer, this means you should leave it as a square root.

IMPORTANT NOTE

- It is very easy to remember " $a^{2}+b^{2}=c^{2}$." But remembering this is meaningless unless you remember what \mathbf{a}, \mathbf{b}, and \mathbf{c} are and when this equation is used.
- This equation is ONLY USED IN RIGHT TRIANGLES.
- \mathbf{a} and \mathbf{b} are the lengths of the two legs. \mathbf{c} is the length of the hypotenuse.

Three strategies to catch mistakes:

1. MAKE SURE YOUR ANSWER IS REASONABLE.
2. MAKE SURE YOUR ANSWER IS REASONABLE.
3. MAKE SURE YOUR ANSWER IS REASONABLE.

For this section...

- We WILL be using calculators.

Calculator Expectations:

- If you have your own, you should bring it.
- You may use yellow OR blue, but be aware that you won't be able to use the yellow ones during TNReady
- You may not use the calculator on your phone. (During class or PLT)
- ALWAYS PUT THE CALCULATOR BACK!!! Check the numbers!!!

Example 3

Discuss with your group how to solve this problem. Estimate what you think the length of the third side would be.

Trick question - you don't know it's a right triangle!!!

Question:

Would this be a right triangle?

Nope: $\mathbf{4}^{\mathbf{2}}+\mathbf{5}^{\mathbf{2}} \neq \mathbf{6}^{\mathbf{2}}$

Example 3: Is it a Right Triangle?

- Set up: $6^{2}+7^{2}=9^{2}$
$36+49=81$
$85=81$
NOT TRUE! Not a right triangle

QUESTION:

- HOW FAR does the catcher throw the ball when trying to catch a runner stealing $2^{\text {nd }}$?

Back to this...

- If you walk from corner to corner of a field that is exactly 1 mile by 1 mile, how many miles did you walk?

HOMEWORK

- Pythagorean Theorem Worksheet
- Use the back or attach a separate sheet if you need more room

