Warmup Created by Mr. Lischwe

8/(Michael Jordan's original number)

THIS WARMUP WILL GO ON A NOTECARD. (On your warmup page, you can just write "notecard")

Solve each equation.Write your solutions as x = ____.

- 1. $x^2 = 64$
- 2. $x^2 = -64$
- 3. $x^3 = 64$
- 4. $x^3 = -64$
- 5. Estimate $\sqrt{76}$. Your answer **must** be accurate to the nearest tenth. Show all of your work.

- Retake/EnrichmentWednesday
- If you want to do a retake tomorrow, you MUST let me know today. You will also have to meet with me either today or tomorrow.

Solve each equation. Write your solutions as x =____. 1. $x^2 = 64$ x = 8, -82. $x^2 = -64$ No solution 3. $x^3 = 64$ x = 44. $x^3 = -64$ x = -45. Estimate $\sqrt{76}$. ≈ 8.7

Table of Contents

- p. 1 Consecutive Sums Project
- p. 2 Stacking Cups Problem
- p. 3 Converting Fractions and Decimals (1.1)
- p. 4 Roots (1.8 & 1.9)
- p. 5 Rational vs. Irrational (1.1)

What do we remember?

- What is the difference between **whole numbers** and **integers?**
- Can you think of some numbers that are not whole numbers **OR** integers?
- The set of ALL numbers you know about is called **real numbers**.

<u>Whole numbers:</u> 0, 1, 2, 3... <u>Integers:</u> Whole numbers plus all the negatives <u>Real Numbers:</u> Integers plus all the fractions & decimals in between

- Try to come up with one real-world example of something that you would count with:
 - Whole numbers
 - IntegersReal Numbers

- The two **most important** groups of numbers for this unit...
- Real numbers can be broken into two categories;
- RATIONAL and IRRATIONAL.

Rational Numbers: Anything that can be written as a fraction of integers Irrational Numbers:

Anything that CANNOT be written as a fraction of integers

For example...

- $\frac{1}{2}$ is a rational number. It is 1 divided by 2.
- -7 is a rational number. It is -7 divided by 1.
- $2\frac{1}{4}$ is a rational number. It is equivalent to $\frac{9}{4}$.
- Is 43.21 a rational number?
- Is 2.777 ... a rational number?
- Is 0.7423897... a rational number?

What KIND of decimals can rational numbers be???

- A rational number is anything that can be written as a fraction of integers
- In your group, pick two integers. Divide them, and see what you get. You may use a calculator if you wish (push ctrl → enter to get the decimal).
- Repeat the process. For each, write the **FRACTION** along with the **DECIMAL** that it equals.
- Write all of your results on a giant whiteboard.

Fractions and Decimals

• Terminating Decimals:

When a long division problem results in a remainder of 0. (The decimal "ends")

• <u>Repeating Decimals:</u> Where one or more digits repeat without end.

