

Quiz News

There will be a quiz on the Tuesday after Thanksgiving on Sequences

Semester Exam is Wednesday, December14th.
Anything we have learned is fair game- you will get a list of topics after Thanksgiving and a review packet a week before the exam. We will have a couple of days to review in class.

Check Homework

Write a Recursive Rule for The Fibonacci Sequence

$$
1,1,2,3,5,8, \ldots
$$

$f(1)=1$
$f(2)=1$
$f(n)=f(n-1)+f(n-2)$ for $n>2$

Explicit Formula for the Fibonacci Sequence

$$
\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
$$

Find the indicated term of the sequence.

7th term: -2, 22, -242, ...
$-3,543,122$

Find the indicated term of the sequence.

25th term: 3, -10, -23, -36, ... -309

Write the explicit and recursive formula for this sequence.

$$
9,3,1,1 / 3 . . .
$$

Explicit: $f(n)=9 \cdot\left(\frac{1}{3}\right)^{n-1}$
Recursive: $f(1)=9$

$$
f(n)=f(n-1) \cdot \frac{1}{3}
$$

Write the explicit and recursive formula for this sequence.

2, 14, 98, 686 ...

Explicit: $f(\mathrm{n})=2 \cdot 7^{(\mathrm{n}-1)}$
Recursive: $f(1)=2$

$$
f(n)=f(n-1) \cdot 7
$$

Write the explicit and recursive formula for this sequence.

$$
6,2,-2,-6,-10, \ldots
$$

Explicit: $f(n)=6-4(n-1)$
Recursive: $f(1)=6$

$$
f(n)=f(n-1)-4
$$

Write the explicit and recursive formula for this sequence.
$16,35,54,73, . .$.

Explicit: $\mathrm{f}(\mathrm{n})=16+19(\mathrm{n}-1)$
Recursive: $f(1)=16$

$$
f(n)=f(n-1)+19
$$

Challenge:

If the $25^{\text {th }}$ term of an arithmetic sequence is 50 and the $27^{\text {th }}$ term is 100, write an explicit and recursive formula for the sequence.

Explicit: $\mathrm{f}(\mathrm{n})=\mathbf{- 5 5 0 + 2 5 (n - 1)}$
Recursive: $f(1)=-550 ; f(n)=f(n-1)+25$

Challenge:

If the $6^{\text {th }}$ term of a geometric sequence is 24 and the $5^{\text {th }}$ term of a geometric sequence is 12 ...
What is the $9^{\text {th }}$ term? 192
What is the $1^{\text {st }}$ term? 0.75
What is the explicit rule?
Explicit: $a_{n}=.75(2)^{n-1}$

Challenge:

If the $31^{\text {st }}$ term of an arithmetic sequence is 150 , and each consecutive term has a common difference of 3 , find the explicit formula for the sequence.

$$
f(n)=60+3(n-1)
$$

What is the $42^{\text {nd }}$ term?

$$
f(42)=183
$$

Challenge:

If the $2^{\text {nd }}$ term of a geometric sequence is 12 and the $4^{\text {th }}$ term of a geometric sequence is 108 , write an explicit and recursive formula for the sequence.

Explicit: $f(n)=4(3)^{n-1}$
Recursive: $f(1)=4 ; f(n)=3 \bullet f(n-1)$

Worksheet

