Warm Up 11/(The average age you graduate from high school) GET A CALCULATOR!

1) The fourth term of a sequence is 108.

Each term after the first is 3 times the previous term.
Write an explicit formula for the sequence.
Explicit: $a_{n}=4(3)^{n-1}$

Find the explicit formula for the sequence. Then find the indicated term of the sequence.
$10,16,22,28, \ldots$ 15th term
Explicit: $\mathrm{a}_{\mathrm{n}}=10+6(\mathrm{n}-1)$

$$
94
$$

Find the explicit formula for the sequence. Then find the indicated term of the sequence.

$$
a_{3}=32 \mathrm{r}=2 ; 12^{\text {th }} \text { term }
$$

Explicit: $\mathrm{a}_{\mathrm{n}}=8(2)^{\mathrm{n}-1}$
16,384

Check Homework

Find the explicit formula for the sequence. Then find the indicated term of the sequence.

$$
a_{4}=37 \quad d=10 \quad \text { 100th term: }
$$

Explicit: $\mathrm{a}_{\mathrm{n}}=7+10(\mathrm{n}-1)$

997

Write an Explicit Rule for this Sequence
 (The Fibonacci Sequence)

$$
1,1,2,3,5,8, \ldots
$$

I am thinking of a sequence...

- With each term, I am adding 4.
- Can you tell me the sequence?

I am thinking of a sequence...

- The first term is 8.
- Can you tell me the sequence?

I am thinking of a sequence...

- The first term is 13.1 multiply the previous term by 2 to get the next term.
-Can you tell me the sequence?

Recursive Rules

- An explicit rule tells you how to get a specific term in a sequence.
- A recursive rule is a different way of describing the sequence. It focuses less on finding specific terms and focuses more on the general pattern of the sequence. It tells you where the sequence starts, and how it changes from term to term.

Recursive Rules

-10, 16, 22, 28, ...

- FIRST TERM = 10
- ANY TERM = PREVIOUS TERM + 6
- How do we write "first term"?
- How do we write "any term"?
- How could we write "previous term"?

Recursive Rules

- 10, 16, 22, 28, ...
- FIRST TERM = 10
- ANY TERM = PREVIOUS TERM + 6
$\cdot a_{1}=10 \quad$ Why do we need
- $a_{n}=a_{n-1}+6$ both parts of this?

You can also do it this way...
-10, 16, 22, 28, ...

- FIRST TERM = 10
- NEXT TERM = CURRENT TERM + 6
- $a_{1}=10$
$\cdot a_{n+1}=a_{n}+6$

What are the first four terms of the sequence defined by the Recursive Rule?

$$
\begin{gathered}
a_{1}=4 \\
a_{n}=5 \cdot a_{n-1}
\end{gathered}
$$

4, 20, 100, 500

What are the first four terms of the sequence defined by the Recursive Rule?

$$
\begin{gathered}
a_{1}=4 \\
a_{n+1}=3 \cdot a_{n}
\end{gathered}
$$

$4,12,36,108$

Write a recursive rule for the sequence.

8, 6.6, 5.2, 3.8, ...

$$
\begin{aligned}
& a_{1}=8 \\
& a_{n}=a_{n-1}-1.4
\end{aligned}
$$

Write the explicit rule AND the recursive rule for the sequence.

15, 26, 37, 48, ...
Explicit: $a_{n}=15+11(n-1)$
Recursive: $a_{1}=15$

$$
a_{n}=a_{n-1}+11
$$

Alternate notation for

sequences...

Although sequence notation is the most common way to write sequences, you can also use function notation.

- a_{n} can also be written as $f(n)$
$\mathrm{a}_{\mathrm{n}-1}$ can also be written as $f(n-1)$
${ }^{-} \mathrm{a}_{12}$ can also be written as $f(12)$
${ }^{\circ}$ etc.

Write a recursive rule for the sequence.

3, 15, 75, 375, ...

$$
\begin{aligned}
& a_{1}=3 \\
& a_{n}=5 \bullet a_{n-1}
\end{aligned}
$$

Write the explicit rule AND the recursive rule for the sequence.

3, 12, 48, 192, ...
Explicit: $a_{n}=3(4)^{n-1}$
Recursive: $a_{1}=3$;

$$
a_{n}=4 \bullet a_{n-1}
$$

Write the explicit rule AND the recursive rule for the sequence. Use function notation!
$3,23,43,63, \ldots$
Explicit: $f(n)=3+20(n-1)$
Recursive: $f(1)=3$;

$$
f(n)=f(n-1)+20
$$

Write the explicit rule AND the recursive rule for the sequence. Use function notation.
6, 12, 24, 48, ...
Explicit: $f(n)=6(2)^{n-1}$
Recursive: $f(1)=6$;

$$
f(n)=2 \cdot f(n-1)
$$

Homework

- Worksheet
-PLEASE CHANGE \#1 TO:
--12, -17, -22, -27, ...

