Warmup 2/ (# of characters in "Valentine's Day") Created by Mr. Lischwe INSIDE YOUR DESK SHOULD BE:

- No regular whiteboards
- **ONE Graphing Sheet**
- ONE Marker/ONE Eraser (PUT EXTRAS BACK)

By moving just ONE matchstick, create a true equation! There are three separate methods that can work. Can you find them all? (None of the methods involve creating a sign!)

р. 457 (I – 7, 9)

▲ ABC with vertices A(1, 2), B(3, 1), and C(3, 4) translated 2 units left and 1 unit up

A'(-1, 3), B'(1, 2), C'(1, 5)

2. rectangle JKLM with vertices J(-3, 2), K(3, 5), L(4, 3), and M(-2, 0) translated 1 unit right and 4 units down

J'(-2, -2), K'(4, 1), L'(5, -1), M'(-1, -4)

Triangle PQR has vertices P(0, 0), Q(5, -2), and R(-3, 6). Find the vertices of P'Q'R' after each translation. (Example 2)

- **3.** 6 units right and 5 units up *P*′(6, 5), *Q*′(11, 3), *R*′(3, 11)
- 4. 8 units left and 1 unit down P'(-8, -1), Q'(-3, -3), R'(-11, 5)

Use the image of the race car at the right. (Example 3)

- 5. Use translation notation to describe the translation from point A to point B. (x 3, y 3)
- 6. Use translation notation to describe the translation from point *B* to point *C*. (x 2, y 4)

Quadrilateral KLMN has vertices K(-2, -2), L(1, 1), M(0, 4), and N(-3, 5). It is first translated by (x + 2, y - 1) and then translated by (x - 3, y + 4). When a figure is translated twice, a double prime symbol is used. Find the coordinates of quadrilateral K"L"M"N" after both translations.

K["](-3, 1), *L*["](0, 4), *M*["](-1, 7), *N*["](-4, 8)

9.
 Preason Inductively A figure is translated by (x − 5, y + 7), then by (x + 5, y − 7). Without graphing, what is the final position of the figure? Explain your reasoning to a classmate. the same as the original position of the figure; Sample answer: Since −5 and 5 are opposites, and −7 and 7 are opposites, the translations cancel each other out.

What kind of transformation is this? (x – 2, y + 4)

A translation of 2 units left and 4 units up

I. The preimage points are (-2, 3) and (1, 3) and the image points are (-6, 6) and (-3, 6). Describe the translation in words. (Which directions? How far?)

• (You can use your graphing sheet to help, but if you can figure it out without it, go for it)

2. Write the translation from #1 in <u>coordinate notation</u>.

- What was the translation? Write it in coordinate notation.
- (x, y + 4)

Table of Contents (2nd Semester)

- p. I Exponent Basics (1.2)
- p. 2 Zero and Negative Exponents (1.5)
- p. 3 Multiplying and Dividing Powers (1.3)
- p.4 Power to a Power (1.4)
- p. 5 Scientific Notation (1.6)
- p. 6 Calculating with Scientific Notation (1.7)
- p. 7 Angle Basics
- p. 8 Angles formed by Parallel Lines
- p. 9 Angle Sums of a Triangle (Guided)
- p. 10 Transformations (6.1 6.3)

Back to this page!!!

Transformations

5

Today's Objectives:

Reflect figures across the x- and y-axis on a coordinate plane

How can we **draw** a reflection?

VOLUNTEER to come up to the board and draw the image of the triangle? You may use any tools you would like to help you be as exact as you can.

TURN YOUR PAPER SO THE LINE OF REFLECTION IS STRAIGHT UP AND DOWN!!!

 It will be <u>much</u> easier to see how the reflection will go.

- Draw a triangle with vertices F (4, 1), B (4, 5), and I (6, 1).
- **REFLECT** ΔFBI over the x-axis.
- YOUR NEW COORDINATES SHOULD BE: F'(4,-1); B'(4,-5); I'(6,-1)

- Erase your image, but keep the original triangle:
 F (4, 1), B (4, 5), and I (6, 1).
- Now reflect ΔFBI over the y-axis.
- YOUR NEW COORDINATES SHOULD BE:
 F'(-4, 1); B'(-4, 5); I'(-6, 1)

Reflection Strategy

• Count spaces from each vertex to the line of reflection, then count the same number of spaces on the other side

Do not reflect over the wrong axis. (This is a VERY common mistake)

One helpful strategy is to trace a line over the axis. This will be a visual reminder of which axis to use.

- Draw parallelogram MATH: M(-5, 5); A(-6, 7);
 T(-1, 5); H(-2, 7)
- First reflect the parallelogram over the xaxis, then reflect the image of that over the y-axis.
- YOUR NEW COORDINATES SHOULD BE: M"(5, -5); A"(6, -7); T"(1, -5); H"(2, -7)

- Draw Δ*FUN*: F(3, 4); U(5, -2); N(7, 4)
- Reflect the triangle over the x-axis.
- YOUR NEW COORDINATES SHOULD BE: F'(3, -4); U'(5, 2); N'(7, -4)

Homework

• p.465 (1 – 7), p. 468 (20, 21)