Created by Mr. Lischwe
Warmup 1/(Michael Jordan's Number)

1. How many degrees is a three-quarter turn? (Three-quarters of a full revolution)
2. When reflecting a figure across a line of reflection, is it ever possible for a point to be reflected onto itself? Explain using diagrams.

PLEASE GET:

- Ruler
- Protractor
- One sheet of Patty Paper

Back to your notes sheet from Friday...

Reflecting across the line $y=x$

Back to your notes sheet from Friday...

p. 851 (1-16) will be graded

 tomorrow- (Yes, I am adding 13-16 now)

Special types of reflections...

- These reflections are very common:
- Reflect across the x-axis
- Reflect across the y-axis
- Reflect across the line $y=x$
- Reflect across the line $y=-x$
- Let's look at each one a little more closely.

Reflecting across the line $y=x$

- When you reflect across the line $y=x$, you are performing this transformation:

$$
\square(\mathbf{x}, \mathbf{y}) \rightarrow(\mathbf{y}, \mathbf{x})
$$

Reflecting across the line $y=-x$

Chart on pg. 846

Rules for Reflections on a Coordinate Plane	
Reflection across the x-axis	$(x, y) \rightarrow(x,-y)$
Reflection across the y-axis	$(x, y) \rightarrow(-x, y)$
Reflection across the line $y=x$	$(x, y) \rightarrow(y, x)$
Reflection across the line $y=-x$	$(x, y) \rightarrow(-y,-x)$

***THESE SHOULD NOT BE THE MAIN WAY YOU DO REFLECTIONS. YOU WILL BE MUCH MORE SUCCESSFULIF YOU UNDERSTAND THEM VISUALLY FIRST AND FOREMOST ${ }^{* * *}$

Reflecting across the line $y=-x$

- When you reflect across the line $y=-x$, you are performing this transformation:

$$
{ }^{\circ}(x, y) \rightarrow(-y,-x)
$$

Now try:

Finding the line of reflection

Who thinks they can draw it???

- To find the line of reflection, find the midpoint of each connecting line. Then connect these midpoints.
- You can always use the midpoint formula to find the midpoints (like in p. 847 Example A), but a lot of times you will be able to find the midpoint by counting squares.

Real-World Application That Will Allow You To Be Really Good At Mini-Golf Or Pool Or Anything Else Where You Have To Bounce A Ball Off A Wall

Explain 4 Applying Reflections

Example 4

The figure shows one hole of a miniature golf course. It is not possible to hit the ball in a straight line from the tee T to the hole H. At what point should a player aim in order to make a hole in one?

YOU TRY: p. 850 (15)

15. Cara is playing pool. She wants to use the cue ball C to hit the ball at
point A without hitting the ball at point B. To do so, she has to bounce the
cue ball off the side rail and into the ball at point A. Find the coordinates
of the exact point along the side rail that Cara should aim for.

Reflect point C across the side rail to locate C. The coordinates of C^{\prime} are $(-3,-2)$. Locate
point X where $\overline{A C}$ intersects the side rail. The coordinates of point X are $(-1,-1)$. Cara should aim for the point $(-1,-1)$ along the side rail.

Finding the angle of rotation

- Estimate: By what angle do you think the shape was rotated?
- Which direction was it rotated?

135°

Now you try to draw one!

Counterclockwise rotation of 40° around point P

What about rotations in the coordinate plane?

Challenge: ROTATE the shape 90°
Challenge: ROTATE the shape 90° clockwise around the origin.

Rotations Video (2 min)
$\qquad \frac{\text { https://www.youtube.com/watch?v=1sxmI4YıK }}{3 \mathrm{~s}}$

Homework
-p. 851 (1-16)
+Reflections Review WS

