Warmup 2/(1/10 of a half-turn)

Created by Mr. Lischwe

Will the equation be linear or not? Explain how you know.

1) $y=\sqrt{x+3}$
2) $y=\frac{5}{3} x-4$
3) $y=4 x^{3}-17$
4) $y=4+\frac{8}{x}$
5) $y=4+\frac{x}{8}$
6) $y=|3 x-4|$
7) $f(x)=-2.75 x$
8) $y=3 x^{1}-4$
9) $y=x(x+5)$
******LOOK INSIDE YOUR DESK.
THERE NEEDS TO BE:

- ONE graphing sheet
- ONE marker
- ONE eraser

IF THERE IS NOT, PLEASE GET THEM FROM THE CABINET. NO, YOU MAY NOT GET A MARKER FROM THE TRAY. THERE ARE ENOUGH!

Go over Angles Quiz

Exponents Test (The one with Tasks) Deadline...

- Two days from now! (Thursday, 2/20)
- You must turn in your extra practice/corrections by tomorrow

p. $465(1-7)$, p. $468(20,21)$

$1 . \triangle G H J$ with vertices $G(4,2), H(3,-4)$, and $J(1,1)$ over the y-axis

$G^{\prime}(-4,2), H^{\prime}(-3,-4), J^{\prime}(-1,1)$
2. $\triangle M N P$ with vertices $M(2,1), N(-3,1)$, and $P(-1,4)$ over the x-axis

$M^{\prime}(2,-1), N^{\prime}(-3,-1), P^{\prime}(-1,-4)$

p. $465(1-7)$, p. $468(20,21)$

3. quadrilateral $W X Y Z$ with vertices $W(-1,-1)$, $X(4,1), Y(4,5)$, and $Z(1,7)$ over the x-axis

$W^{\prime}(-1,1), X^{\prime}(4,-1), Y^{\prime}(4,-5), Z^{\prime}(1,-7)$
4. quadrilateral $D E F G$ with vertices $D(1,0)$, $E(1,-5), F(4,-1)$, and $G(3,2)$ over the y-axis

$D^{\prime}(-1,0), E^{\prime}(-1,-5), F^{\prime}(-4,-1), G^{\prime}(-3,2)$
5. The figure at the right is reflected over the x-axis. Find the coordinates of point A^{\prime} and point B^{\prime}. Then sketch the image on the coordinate plane. (Example 3)

$$
A^{\prime}(-3,-3), B^{\prime}(3,-3)
$$

Identify Structure The coordinates of a point and its image after a reflection are given. Describe the reflection as over the \boldsymbol{x}-axis or \boldsymbol{y}-axis.
6. $A(-3,5) \rightarrow A^{\prime}(3,5) \frac{y \text {-axis }}{\substack{n}}$
$17 M(3,3) \rightarrow M^{\prime}(3,-3) x$-axis
20. Graph the image of triangle $R S T$ after it is reflected over the x-axis then translated 4 units to the right and 3 units down.

What are the vertices of triangle $R^{\prime} S^{\prime} T^{\prime}$?

$$
R^{\prime}(0,0), S^{\prime}(1,-2), T^{\prime}(4,-1)
$$

21. The figure shown at the right was transformed from Quadrant II to Quadrant III.

Fill in each box to make a true statement to describe the transformation.

The figure was reflected over the x-axis

Table of Contents ($2^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Zero and Negative Exponents (1.5)
p. 3 Multiplying and Dividing Powers (1.3)
p. 4 Power to a Power (1.4)
p. 5 Scientific Notation (1.6)
p. 6 Calculating with Scientific Notation (1.7)
p. 7 Angle Basics
p. 8 Angles formed by Parallel Lines
p. 9 Angle Sums of a Triangle (Guided)
p. 10 Transformations (6.1-6.3)

Back to this page!!!

Shortcut to reflections?

- Where will point A end up???

Reflecting Across the x-axis:

- x stays the same, y becomes the opposite

Coordinate notation is ($x,-y$)

Shortcut to reflections?

- Where will point A end up???

Reflecting Across the x-axis:

- x stays the same, y becomes the opposite

Reflecting Across the y -axis:

- x becomes the opposite, y stays the same

Coordinate notation is (-x, y)

How do I draw...

- The graph of the line $\mathbf{y}=\mathbf{2}$?

How do I draw...

- The graph of the line $\mathbf{x}=\mathbf{5}$?

Harder ones:

- J(-6, 6) K(-5, 8) L(-2, 6)
- Reflect across the line $y=4$!

Harder ones:

- J(-6, 6) K(-5, 8) L(-2, 6)
- Reflect across the line $x=2$!

COPY:

x = number: vertical line

$y=$ number: horizontal line

Examples

$x=-3$

$y=6$

Challenge: Reflect the figure across

 the line!

Table of Contents ($\mathbf{2}^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Multiplying and Dividing Powers (1.3)
p. 3 Power to a Power (1.4)
p. 4 Zero \& Negative Exponents (1.5)
p. 5 Scientific Notation (1.6)
p. 6 Calcluating with Scientific Notation (1.7)
p. 7 Angle Basics
p. 8 Angles formed by Parallel Lines (5.1)
p. 9 Transformations (6.1-6.3)
p. 10 Rotations (Handout)

Transformations

Today's Objectives (Rotations):

- Use patty paper to rotate a shape any number of degrees around a point
- Use patty paper to rotate a shape $90^{\circ}, 180^{\circ}$, or 270° on a coordinate plane
- Rotate a shape on a coordinate plane WITHOUT patty paper

Rotations Video (2 min)

- https://www.youtube.com/watch?v=1sxmI4Y1K3s

Rotations on the Coordinate Plane - WITH Patty Paper

- Look at graph \#1.
- We are going to rotate the trapezoid 90° counterclockwise, using the origin as the point of rotation. Without patty paper, try to predict exactly where it will end up.

Rotations on the Coordinate Plane - WITH Patty Paper

- T(4, 1); R(4, 5); A(6, 3); P(6, 1).
- We are going to rotate the trapezoid 90° counterclockwise.
- Use patty paper to trace the trapezoid and the \mathbf{x} - and \mathbf{y}-axis.
- Turn the patty paper 90° counterclockwise until the x - and y axis line up again.
- Write down the new coordinates of $T^{\prime}, R^{\prime}, A^{\prime}$, and P^{\prime} somewhere or memorize their locations.
- Remove the patty paper and draw your new trapezoid using those coordinates.

