Created by Ms. Poe

Warmup $2 /(10 \div 2 \cdot 2+6 \div 2)$

- NEED:

- Protractor
- One piece of patty paper
(Week 6!)
Draw a capital "P" like so:

D Draw what the P would look like rotated 90° clockwise.
2) Draw what the P would look like rotated 180° clockwise.
3) Draw what the P would look like rotated 270° clockwise.
4) Draw what the P would look if you reflected it using a vertical line of reflection.
5) Draw what the \mathbf{P} would look if you reflected it using a horizontal line of reflection.
6) (Challenge) Draw what the P would look if you reflected it using a diagonal line of reflection.

More transformation problems...

ON GRAPH 1

- A triangle was translated 4 units up and 2 units left. The image is $\mathbf{A}^{\prime}(-2,7) B^{\prime}(-1,9) C^{\prime}(1,7)$. Draw the original triangle $\mathbf{A B C}$.
- In reverse: 2 right and 4 down

ALSO ON GRAPH 1

- A quadrilateral was reflected across the x-axis. The image is $D^{\prime}(-8,5) E^{\prime}(-8,7) F^{\prime}(-6,7) G^{\prime}(-4,3)$. Draw the original quadrilateral DEFG.
- In reverse: reflect back across the x-axis

Counterclockwise and clockwise...

ON GRAPH 2

- A triangle was rotated 90° clockwise. The image is $A^{\prime}(2,5) B^{\prime}(2,9) C^{\prime}(4,5)$. Draw the original triangle $A B C$.
- In reverse: 90° counterclockwise

ON GRAPH 3

- A triangle was rotated 270° counterclockwise. The image is $D^{\prime}(5,-7) E^{\prime}(6,-4) F^{\prime}(7,-7)$. Draw the original triangle DEF.
- In reverse: $\mathbf{2 7 0}{ }^{\circ}$ clockwise
- It's very easy to mix these up if you're not careful.

oPICTURE A CLOCK!!!

More transformation problems...

More transformation problems...

ON GRAPH 6

- A trapezoid was translated 5 units down, then reflected across the x-axis and then rotated 270° clockwise. The image is $A^{\prime}(1,6) B^{\prime}(1,1)$ $C^{\prime}(3,1) D^{\prime}(3,4)$. Draw the original trapezoid $A B C D$.
- In reverse: rotate 270° counterclockwise, then reflect across the x-axis, then translate 5 units up.

In reverse:

- rotate 270°
counterclockwise
- then reflect across the x -axis
- then translate 5 units up.

A trapezoid was translated 5 units down, then reflected across the x-axis and then rotated 270° clockwise.

HOMEWORK:

- Worksheet - Reverse transformations and Finding your own sequences of transformations

