Warmup 2/(Sum of the numbers on

a die) Created by Mr. Lischwe

1) What sequence of transformations could map shape " A " onto shape " B "? Be specific!

2) Draw a capital "R" like so:
3) Draw the R after $a 90^{\circ}$ clockwise rotation.
4) Draw the R after a 180° clockwise rotation.
5) Draw the R after a 270° clockwise rotation.
6) Draw the R using a vertical line of reflection.
7) Draw the R using a horizontal line of reflection.
8) (Challenge) Draw the R after a diagonal line of reflection.

Don't turn your rotations into reflections...

Which one is the correct rotation around the origin?

Rotations around OTHER points than the origin..

- Rotating around the origin:

Rotations around OTHER points than the origin..

- Rotate around one of the vertices...

Rotations around OTHER points than the origin..

- Around a diiferent vertex...

Rotations around OTHER points than the origin..

- Around a different vertex...

Rotations around OTHER points than the origin..

- Around the point $(2,1)$

Rotations around OTHER points than the origin..

- Around the point $(0,6)$

If you're still struggling with rotations...

- I put a link on my website to a good Youtube video that explains the strategy.

Challenge: Reflect the figure across

 the line!

Table of Contents ($\mathbf{2}^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Multiplying and Dividing Powers (1.3)
p. 3 Power to a Power (1.4)
p. 4 Zero \& Negative Exponents (1.5)
p. 5 Scientific Notation (1.6)
p. 6 Calcluating with Scientific Notation (1.7)
p. 7 Angle Basics
p. 8 Angles formed by Parallel Lines (5.1)
p. 9 Transformations (6.1-6.3)
p. 10 Rotations (Handout)
p. 11 Reverse Transformations

Reverse Transformations

Today's Objectives:

- Perform translations, reflections, and rotations in reverse!

More transformation problems...

ON GRAPH 1

- A triangle was translated 4 units up and 2 units left. The image is $\mathbf{A}^{\prime}(-2,7) B^{\prime}(-1,9) C^{\prime}(1,7)$. Draw the original triangle $A B C$.
- In reverse: 2 right and 4 down

More transformation problems...

ON GRAPH 1

- A triangle was translated 4 units up and 2 units left. The image is $A^{\prime}(-2,7) B^{\prime}(-1,9) C^{\prime}(1,7)$. Draw the original triangle $\mathbf{A B C}$.
- In reverse: 2 right and 4 down

ALSO ON GRAPH 1

- A quadrilateral was reflected across the x-axis. The image is $D^{\prime}(-8,5) E^{\prime}(-8,7) F^{\prime}(-6,7) G^{\prime}(-4,3)$. Draw the original quadrilateral DEFG.
- In reverse: reflect back across the x-axis

Counterclockwise and clockwise...

- It's very easy to mix these up if you're not careful.
oPICTURE A CLOCK!!!

More transformation problems...

ON GRAPH 2

- A triangle was rotated 90° clockwise. The image is $A^{\prime}(2,5) B^{\prime}(2,9) C^{\prime}(4,5)$. Draw the original triangle $A B C$.
- In reverse: 90° counterclockwise

A triangle was rotated 90° clockwise.

More transformation problems...

ON GRAPH 3

- A triangle was rotated 270° counterclockwise. The image is $D^{\prime}(5,-7) E^{\prime}(6,-4) F^{\prime}(7,-7)$. Draw the original triangle DEF.
- In reverse: $27 \mathbf{0}^{\circ}$ clockwise

A triangle was rotated 270° counterclockwise.

More transformation problems...

ON GRAPH 4

- A triangle was reflected across the y-axis and then translated right 3 units. The image is $A^{\prime}(5,4)$ $B^{\prime}(6,2) C^{\prime}(9,2)$. Draw the original triangle $A B C$.
- In reverse: translate left 3 units, then reflect across the y-axis

ON GRAPH 5

- A rectangle was translated 3 units right and 5 units down, and then rotated 90° counterclockwise. The image is $D^{\prime}(3,-7) E^{\prime}(8,-7)$ $F^{\prime}(8,-5) G^{\prime}(3,-5)$. Draw the original rectangle DEFG.
- In reverse: rotate 90° clockwise, then translate 5 up and 3 left

A triangle was reflected across the y -
In reverse:
translate left 3 units, then reflect across the y-axis axis and then translated right 3 units.

More transformation problems...

ON GRAPH 4

- A triangle was reflected across the y-axis and then translated right 3 units. The image is $A^{\prime}(5,4)$ $B^{\prime}(6,2) C^{\prime}(9,2)$. Draw the original triangle $A B C$.
- In reverse: translate left 3 units, then reflect across the y-axis

ON GRAPH 5

- A rectangle was translated 3 units right and 5 units down, and then rotated 90° counterclockwise. The image is $D^{\prime}(3,-7) E^{\prime}(8,-7)$ $F^{\prime}(8,-5) G^{\prime}(3,-5)$. Draw the original rectangle DEFG.
- In reverse: rotate 90° clockwise, then translate 5 up and 3 left

A rectangle was translated 3 units right and 5 units down, and then rotated 90°
In reverse: rotate 90° clockwise, then translate 5 up and 3 left counterclockwise.

More transformation problems...

ON GRAPH 6

- A trapezoid was translated 5 units down, then reflected across the x-axis and then rotated 270° clockwise. The image is $A^{\prime}(1,6) B^{\prime}(1,1)$ $C^{\prime}(3,1) D^{\prime}(3,4)$. Draw the original trapezoid $A B C D$.
- In reverse: rotate 270° counterclockwise, then reflect across the x-axis, then translate 5 units up.

In reverse:

- rotate 270° counterclockwise
- then reflect across the x-axis
- then translate 5 units up.

A trapezoid was translated 5 units down, then reflected across the x -axis and then rotated 270° clockwise.

HOMEWORK:

- Same as yesterday

