<u>Review – Scatter Plots and Frequency Tables</u>

<u> Task 1</u>

Task 2

1) Find the slope of the line of best fit, and describe what it means in the context of the situation.

2) Find the y-intercept of the line of best fit, and describe what it means in the context of the situation.

3) Write an equation in the form y=mx+b for the line of best fit.

4) Use your equation to predict the distance of a four-hour training run.

1) Find the slope of the line of best fit, and describe what it means in the context of the situation.

2) Find the y-intercept of the line of best fit, and describe what it means in the context of the situation. (You can assume that x = 0 represents year 1999)

3) Write an equation in the form y=mx+b for the line of best fit, where x is the number of years after 1999.

4) Use your equation to predict the amount of rainfall in Tennessee in 2016.

<u> Task 3</u>

A high school ran a survey on hair color. Use the information in the frequency table to answer the questions.

- 1) What percentage of the school is a 10th grader with black hair?
- 2) What percentage of the school is a 9th grader?
- 3) What percentage of the 12th graders have blond hair?
- 4) What percentage of the redheads are older than 10th graders?
- 5) Out of all the underclassmen (9th and 10th graders), what percentage of them do not have blond hair?
- 6) Who was more likely to have red hair 10th graders or 12th graders? Justify your reasoning with numbers.

Name:

<u>Grade</u>	Hair Color											
	Blond	Brown	Black	Red	<u>Total</u>							
9 th	45	41	61	3	150							
10 th	25	35	60	5	125							
11 th	36	48	34	2	120							
12 th	20	29	51	5	105							
Total	126	153	206	15	500							

180 middle schoolers took a survey about their grade point average and whether or not they played a sport. There were 125 total middle schoolers who had a GPA of over 3.0. Out of the 70 middle schoolers who played a sport, 15 of them had a GPA under 3.0.

1) Complete the frequency table.

	Plays Sport	Does Not Play Sport
GPA over 3.0		
GPA under 3.0		

2) Is there a correlation between the middle

schoolers' GPA and whether or not they played a sport? (In other words, based on this sample, who is more likely to have a GPA over 3.0 – sport-players or non sport-players?) Justify your reasoning.

<u>Task 5</u>

1) The table below shows the number of points per game (PPG) scored by 20 NBA players in the 2015-16 season, along with their 2015-16 salary. Create a scatter plot of the data. Put points per game as the x-axis and their salary on the y-axis. Be sure to choose appropriate intervals for your x and y-axis.

2) Is there a positive, negative, or no correlation? What does this correlation mean?

3) Do you think the correlation is strong, moderate, or weak? Why?

4) Do you see any outliers? What causes them to be outliers?

<u>Player</u>	PPG	<u>Salary</u>				
Kobe Bryant	17.6	\$25,000,000				
LeBron James	25.3	\$23,000,000				
Carmelo Anthony	21.8	\$22,900,000				
Kevin Durant	28.2	\$22,000,000				
Chris Paul	19.5	\$21,500,000				
Dwyane Wade	19	\$20,000,000				
Russell Westbrook	23.5	\$16,700,000				
James Harden	29	\$15,700,000				
Roy Hibbert	5.9	\$15,500,000				
Demarcus Cousins	26.9	\$14,700,000				
John Wall	19.9	\$14,700,000				
Draymond Green	14	\$14,300,000				
Stephen Curry	30.1	\$11,200,000				
Luol Deng	12.3	\$10,100,000				
Dirk Nowitzki	18.3	\$8,200,000				
Tim Duncan	8.6	\$5,200,000				
Victor Oladipo	16	\$5,100,000				
Kristaps Porzingis	14.3	\$4,000,000				
Paul Pierce	6.1	\$3,300,000				
Jeremy Lin	11.7	\$2,100,000				

<u>Task 4</u>