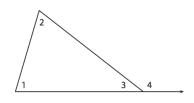

Review Sheet

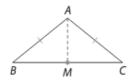

Vocabulary

Regular Polygon Interior Angle Exterior Angle Diagonal Isosceles Triangle Equilateral Triangle

Proofs We Have Discussed

Statements	Reasons
1. Draw line ℓ through point B parallel to \overline{AC} .	1. Parallel Postulate
2. $m \angle 1 = m \angle \frac{4}{}$ and $m \angle 3 = m \angle \frac{5}{}$	2. Alternate Interior Angles Theorem
3. m∠4 + m∠2 + m∠5 = 180°	Angle Addition Postulate and definition of straight angle
4. $m\angle \frac{1}{m} + m\angle 2 + m\angle \frac{3}{m} = 180^{\circ}$	4. Substitution Property of Equality

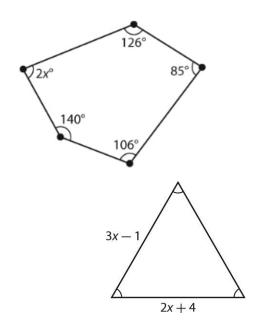
By the **Triangle Sum Theorem**, $m\angle 1 + m\angle 2 + m\angle 3 = 180^{\circ}$.

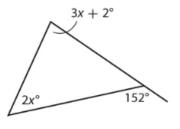

Also, $m \angle 3 + m \angle 4 = 180^{\circ}$ because they are supplementary and make a straight angle.

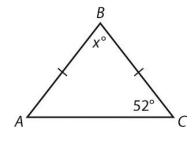
By the Substitution Property of Equality, then, $m\angle 1 + m\angle 2 + m\angle 3 = m\angle \frac{3}{m} + m\angle \frac{4}{m}$.

Subtracting $m \angle 3$ from each side of this equation leaves $m \angle 1 + m \angle 2 = m \angle 4$

This means that the measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles.

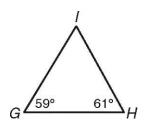

Critical Thinking Prove $\angle B \cong \angle C$, given point M is the midpoint of \overline{BC} .

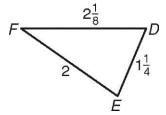



Statements	Reasons
1. <i>M</i> is the midpoint of \overline{BC} .	1. Given
2. BM ≅ CM	2. Definition of midpoint
3. $\overline{AB} \cong \overline{AC}$	3. Given
4. \overline{AM} \cong \overline{AM}	4. Reflexive Property of Congruence
5. △AMB ≅ △AMC	5. SSS Triangle Congruence Theorem
6. ∠B≅ ∠C	6. CPCTC

How do you find the sum of the interior angles of a polygon?

Find the value of x.





Name the sides from smallest to largest.

Name the angles in order from smallest to largest.

Can three segments with lengths 8, 15, and 6 make a triangle? Explain your answer.

A triangle has sides 3 cm and 8 cm. What are the possible side lengths of the third side?