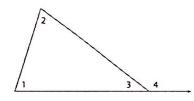
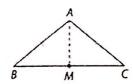

Review Sheet I


Vocabulary

Regular Polygon Interior Angle Exterior Angle Diagonal Isosceles Triangle Equilateral Triangle

Proofs We Have Discussed

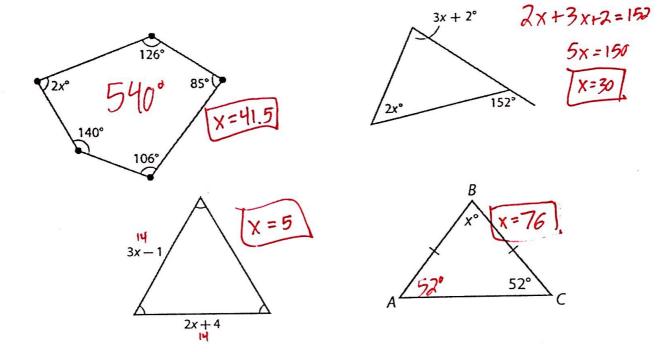
1. Draw line ℓ through point B parallel to \overline{AC} .	1. Parallel Postulate
2. $m\angle 1 = m\angle$ 4 and $m\angle 3 = m\angle$ 5	2. Alternate Interior Angles Theorem
3. m∠4 + m∠2 + m∠5 = 180°	Angle Addition Postulate and definition of straight angle
$4. \text{ m/} \frac{1}{1} + \text{m/} 2 + \text{m/} \frac{3}{1} = 180^{\circ}$	4. Substitution Property of Equality


By the Triangle Sum Theorem , $m\angle 1 + m\angle 2 + m\angle 3 = 180^{\circ}$.

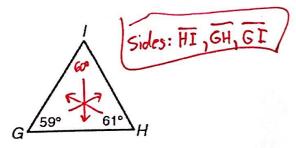
Also, $m\angle 3+m\angle 4=\frac{180^\circ}{}$ because they are supplementary and make a straight angle.

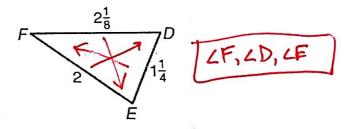
By the Substitution Property of Equality, then, $m\angle 1+m\angle 2+m\angle 3=m\angle 3+m\angle 4$. Subtracting $m\angle 3$ from each side of this equation leaves $m\angle 1+m\angle 2=m\angle 4$.

This means that the measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles.


Critical Thinking Prove $\angle B \cong \angle C$, given point M is the midpoint of \overline{BC} .

1. M is the midpoint of BC.	1. Given
2. BM ≅ CM	2. Definition of midpoint
3. \overline{AB} ≅ \overline{AC}	3. Given
4. AM≅ AM	4. Reflexive Property of Congruence
5. △AMB ≅ △AMC	5. SSS Triangle Congruence Theorem
5. ∠B≅ ∠C	6. CPCTC


How do you find the sum of the interior angles of a polygon?


Find the value of x.

lame the sides from smallest to largest.

Name the angles in order from smallest to largest.

an three segments with lengths 8, 15, and 6 make a triangle? Explain your answer.

§ 6

triangle has sides 3 cm and 8 cm. What are the possible side lengths of the third side?