Review Sheet

Proofs We Have Discussed and will be on the quiz

Statements	Reasons
1. Draw line ℓ through point B parallel to $\overline{A C}$.	1. Parallel Postulate
2. $\mathrm{m} \angle 1=\mathrm{m} \angle \quad 4$ and $\mathrm{m} \angle 3=\mathrm{m} \angle \quad 5$	2. Alternate Interior Angles Theorem
3. $\mathrm{m} \angle 4+\mathrm{m} \angle 2+\mathrm{m} \angle 5=180^{\circ}$	3. Angle Addition Postulate and definition of straight angle
4. $\mathrm{m} \angle 1+\mathrm{l} \angle 2+\mathrm{m} \angle \underline{3}=180^{\circ}$	4. Substitution Property of Equality

By the Triangle Sum Theorem, $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$.

Also, $\mathrm{m} \angle 3+\mathrm{m} \angle 4=180^{\circ}$ because they are supplementary and make a straight angle.
By the Substitution Property of Equality, then, $m \angle 1+m \angle 2+m \angle 3=m \angle 3+m \angle 4$.
Subtracting $\mathrm{m} \angle 3$ from each side of this equation leaves $\mathbf{m} \angle 1+\mathbf{m} \angle \mathbf{2}=\mathbf{m} \angle 4$.
This means that the measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles.

Critical Thinking Prove $\angle B \cong \angle C$, given point M is the midpoint of $\overline{B C}$.

Statements	Reasons
1. M is the midpoint of $\overline{B C}$.	1. Given
2. $\overline{B M} \cong \overline{C M}$	2. Definition of midpoint
3. $\overline{A B} \cong \overline{A C}$	3. Given
4. $\overline{A M} \cong \overline{A M}$	4. Reflexive Property of Congruence
5. $\triangle \boldsymbol{A M B} \cong \triangle A M C$	5. SSS Triangle Congruence Theorem
6. $\angle B \cong \angle C$	6. CPCTC

1. How do you find the sum of the interior angles of a polygon?
2. How many sides does a polygon with an interior angle sum of 2700° have?
3. What is the measure of an interior angle of a regular pentagon?
4. Find the value of x in each.

Find the value of $a . \rightarrow$

5. Name the sides from smallest to largest.
6. Name the angles in order from smallest to largest.

7. Can three segments with lengths 8,15 , and 6 make a triangle? Explain your answer.
8. Can a triangle be made from the side lengths 3,3 , and 6 ? Explain.
9. A triangle has sides 3 cm and 8 cm . What are the possible side lengths of the third side?
10. What is a midsegment of a triangle?

Find the value of n.

