## **Review Sheet**

## Proofs We Have Discussed and will be on the quiz



| Statements                                                                 | Reasons                                                   |
|----------------------------------------------------------------------------|-----------------------------------------------------------|
| <b>1.</b> Draw line $\ell$ through point $B$ parallel to $\overline{AC}$ . | 1. Parallel Postulate                                     |
| 2. $m\angle 1 = m\angle $ and $m\angle 3 = m\angle $ 5                     | 2. Alternate Interior Angles Theorem                      |
| 3. m∠4 + m∠2 + m∠5 = 180°                                                  | Angle Addition Postulate and definition of straight angle |
| 4. m $\angle$ 1 + m $\angle$ 2 + m $\angle$ 3 = 180°                       | 4. Substitution Property of Equality                      |



By the Triangle Sum Theorem,  $m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ$ . Also,  $m\angle 3 + m\angle 4 = \underline{180^\circ}$  because they are supplementary and make a straight angle. By the Substitution Property of Equality, then,  $m\angle 1 + m\angle 2 + m\angle 3 = m\angle \underline{3} + m\angle \underline{4}$ . Subtracting  $m\angle 3$  from each side of this equation leaves  $\underline{m\angle 1 + m\angle 2 = m\angle 4}$ . This means that the measure of an exterior angle of a triangle is equal to the sum of the

**Critical Thinking** Prove  $\angle B \cong \angle C$ , given point M is the midpoint of  $\overline{BC}$ .

measures of the remote interior angles.



| Statements                                  | Reasons                             |
|---------------------------------------------|-------------------------------------|
| 1. $M$ is the midpoint of $\overline{BC}$ . | 1. Given                            |
| 2. <u>BM</u> ≅ <u>CM</u>                    | 2. Definition of midpoint           |
| 3. $\overline{AB} \cong \overline{AC}$      | 3. Given                            |
| 4. $\overline{AM}$ $\cong$ $\overline{AM}$  | 4. Reflexive Property of Congruence |
| 5. △AMB ≅ △AMC                              | 5. SSS Triangle Congruence Theorem  |
| 6. ∠B≅ ∠C                                   | 6. CPCTC                            |

- 1. How do you find the sum of the interior angles of a polygon?
- 2. How many sides does a polygon with an interior angle sum of 2700° have?
- 3. What is the measure of an interior angle of a regular pentagon?

## 4. Find the value of x in each.







Find the value of a.  $\rightarrow$ 



- 5. Name the sides from smallest to largest.
- 6. Name the angles in order from smallest to largest.





- 7. Can three segments with lengths 8, 15, and 6 make a triangle? Explain your answer.
- 8. Can a triangle be made from the side lengths 3, 3, and 6? Explain.
- 9. A triangle has sides 3 cm and 8 cm. What are the possible side lengths of the third side?
- 10. What is a midsegment of a triangle?

Find the value of n.

