Created by Mr. Lischwe

Warmup $8 /(9+10+2)$

***Make sure there is a whiteboard, marker, and eraser in your desk! ($3^{\text {rd }}$ period, get them from the cabinet!) ${ }^{* * *}$

Multiply.

1. $-2 \cdot-2 \cdot-2 \cdot-2$
2. $-5 \cdot-5 \cdot-5$
3. Will $(-3)^{8}$ be positive or negative? Explain, in words, how you know.

Lischwe Age Problem, Part 2

- Nate's age + Anne's age $=67$
- 26 years ago, Nate was twice as old as Anne.

Table of Contents

p. 1 Converting Fractions and Decimals (1.1)
p. 2 Roots (1.8 \& 1.9)

BACK TO THIS PAGE

$$
(\sqrt{\mathbf{8 1}})^{2}=81
$$

$$
(\sqrt{196})^{2}=196
$$

\square If you square a square root, you get the original number again!

$$
(\sqrt{12345})^{2}=12345
$$

\square You can also have cube roots, $4^{\text {th }}$ roots, $5^{\text {th }}$ roots, etc.
\square Examples
$\sqrt[3]{64}=$ because \qquad
$\sqrt[4]{16}=\quad$ because \qquad

Technical Vocab Stuff:

\square A radical sign without a number is automatically a square root. You will usually never see the "2" there.

$\sqrt[2]{x}$

KNOW THE DIFFERENCE:

$$
\begin{aligned}
& \sqrt[3]{6} \quad \text { "The cube root of } 64 " \\
& =3 \cdot 8=24 \\
& =3
\end{aligned}
$$

Perfect Cubes

\square These are ALSO good to know:

$$
\begin{gathered}
\mathbf{1}^{3}=1 \\
2^{3}=\mathbf{8} \\
3^{3}=27 \\
4^{3}=\mathbf{6 4} \\
5^{3}=\mathbf{1 2 5} \\
\mathbf{6}^{\mathbf{3}}=\mathbf{2 1 6} \\
\mathbf{7}^{3}=\mathbf{3 4 3} \\
\mathbf{8}^{\mathbf{3}}=\mathbf{5 1 2} \\
\mathbf{9}^{\mathbf{3}}=\mathbf{7 2 9} \\
\mathbf{1 0}^{\mathbf{3}}=\mathbf{1 0 0 0}
\end{gathered}
$$

Negative Number stuff...

\square What about these?

- $\sqrt{-25}$
- $\sqrt[3]{-8}$
- $\sqrt[4]{-10000}$
- $\sqrt[5]{-32}$

Roots of Negative Numbers

\square Odd roots ($3^{\text {rd }}$ root, $5^{\text {th }}$ root, etc.) of negative numbers work.
\square Even roots (square root, $4^{\text {th }}$ root, etc.), of negative numbers are UNDEFINED (do not work).

- In algebra 2, you will learn about imaginary numbers, which are what you get when you take the square root of a negative number.

Fractions...

\square What about these?
$\square \sqrt{\frac{64}{9}}$
$\square \sqrt{\frac{32}{8}}$

Examples

$$
\begin{array}{ll}
\text { 1. } & -\sqrt{49} \\
\text { 2. } & \sqrt{-49} \\
\text { 3. } & \sqrt[3]{-125} \\
\text { 4. } & \pm \sqrt{64} \\
\text { 4ndefined } \\
\text { 5. } \sqrt[4]{25} & = \pm 5 \\
\text { 6. } \sqrt{\frac{25}{4}} & =\frac{5}{2} \\
& \sqrt[3]{-\frac{8}{27}} \\
\text { 7. } & =-\frac{2}{3} \\
\text { 8. } \sqrt[87]{1} & =1
\end{array}
$$

Challenge

\square Without a calculator, find the square root of:

1. 576
2. 2209
3. $900,000,000$

Homework (Due tomorrow)

$\square \mathrm{p} .75(1-4,10,16,18-23)$
\square No calculator. You MUST show your work on problems 2, 10, and 16.

Next objective: ESTIMATING square roots
$\square \sqrt{60}$

DECMMAL CHALEENGE:

ESTIMATING SQUARE ROOTS

ESTIMATING ROOTS

\square Based on your knowledge of the perfect squares, you should be able to estimate square roots of nonperfect squares pretty accurately.
\square On your whiteboard, try to estimate the value of the square root to the nearest hundredth (two decimal places)

$\sqrt{17}$

\approx

One estimation example for your notes...

Estimating Square Roots

$\square \sqrt{84} \approx \underline{9.2 \text { because } \underline{\sqrt{81}}=9 \text { and } \sqrt{100}=10}$

- 84 is closer to 81 than 100, so it should be less than 9.5.

\approx

$$
\approx 10.25
$$

≈ 8.77

$$
\approx 2.83
$$

$$
\approx 4.58
$$

$$
\approx 12.33
$$

$\sqrt{300}$

$$
\approx 17.32
$$

$$
\approx 14.66
$$

$$
\approx 11.79
$$

$\sqrt[3]{10}$
 \approx

$$
\approx 4.99
$$

HOMEWORK (Due tomorrow)

Estimating Roots Half-Sheet

