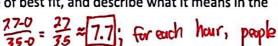
Review - Scatter Plots and Frequency Tables

Name: KE

30

24

18

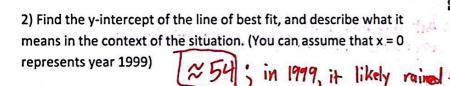

(0,0)

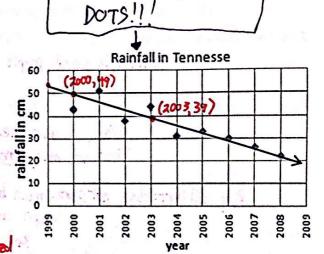
TRAINING RUNS

Time (in hours)

Task 1

1) Find the slope of the line of best fit, and describe what it means in the context of the situation.


- ran about 7.7 miles.
- 2) Find the y-intercept of the line of best fit, and describe what it means in the context of the situation.
- Write an equation in the form y=mx+b for the line of best fit.


4) Use your equation to predict the distance of a four-hour training run.

Task 2

1) Find the slope of the line of best fit, and describe what it means in the context of the situation.

Each year, it rained approximately 3.3 cm less.

about 54 cm 3) Write an equation in the form y=mx+b for the line of best fit, where x is the number of years after 1999.

4) Use your equation to predict the amount of rainfall in Tennessee in 2016.

Grade

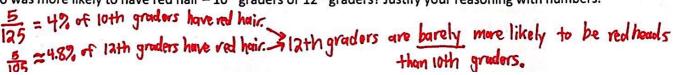
Task 3

A high school ran a survey on hair color. Use the information in the frequency table to answer the questions.

1) What percentage of the school is a 10th grader with black hair?

500	60	= 12%
of the school is	a 9th grader?	Sat -[1873]

2) What percentage o


9 grauer:	IEA F	-
150	150 = 30%	
rs have blon	d hair?	٠

3) What percentage of the 12th grade

	,	Blond	Brown	Black	Red	Total	1
	9 th	45	41	61	3	150	1
٠	10 th	25	35	60	5	125]
	11 th	36	48	34	2	120]
-	. 12 th	20	29	51	5	105	
	Total	126	153	206	15	500	1

Hair Color

- 4) What percentage of the redheads are older than 10th
- 5) Out of all the underclassmen (9th and 10th graders), what percentage of them do not have blond hair? 41+61+3+35+60+5=205
- 6) Who was more likely to have red hair 10th graders or 12th graders? Justify your reasoning with numbers.

Task 4

180 middle schoolers took a survey about their grade point average and whether or not they played a sport. There were 125 total middle schoolers who had a GPA of over 3.0. Out of the 70 middle schoolers who played a sport, 15 of them had a GPA under 3.0. **Plays Sport Does Not Play Sport**

GPA over 3.0

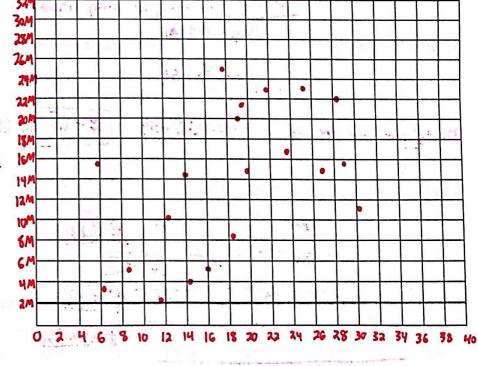
- 1) Complete the frequency table.
- GPA under 3.0 55 Is there a correlation between the middle Total: 190 schoolers' GPA and whether or not they played a sport? (In other words, based on this sample, who is more likely to have a GPA over 3.0 – sport-players or non sport-players?) Justify your reasoning.

55 ≈ 79% of sport-players had a G	PA over 3.d.	
70 2647, of non sport-players had a	GPA over 3.0.	likely to

- 1) The table below shows the number of points per game (PPG) scored by 20 NBA players in the 2015-16 season, along with their 2015-16 salary. Create a scatter plot of the data. Put points per game as the x-axis and their salary on the yaxis. Be sure to choose appropriate intervals for your x and y-axis.
- 2) Is there a positive, negative, or no correlation? What does this correlation mean?

Positive; in general, people who soured more points had a higher salary.

3) Do you think the correlation is strong, moderate, or weak? Why?


Weak because the dots are fairly spread out. There are many other factors that determine a salary (defense, rebounding, age)

4) Do you see any outliers? What causes them to be outliers?

Roy Hibbert: does not score much but gets paid a lot.

Steph Curry: Scores a lot but gets paid relatively little.

<u>Player</u>	PPG	Salary	
Kobe Bryant	17.6	\$25,000,000	
LeBron James	25.3	\$23,000,000	
Carmelo Anthony	21.8	\$22,900,000	
Kevin Durant	28.2	\$22,000,000	
Chris Paul	19.5	\$21,500,000	
Dwyane Wade	19	\$20,000,000	
Russell Westbrook	23.5	\$16,700,000	
James Harden	29	\$15,700,000	
Roy Hibbert	5.9	\$15,500,000	
Demarcus Cousins	26.9	\$14,700,000	
John Wall	19.9	\$14,700,000	
Draymond Green	14	\$14,300,000	
Stephen Curry	30.1	\$11,200,000	
Luol Deng	12.3	\$10,100,000	
Dirk Nowitzki	18.3	\$8,200,000	
Tim Duncan	8.6	\$5,200,000	
Victor Oladipo	16	\$5,100,000	
Kristaps Porzingis	14.3	\$4,000,000	
Paul Pierce	6.1	\$3,300,000	
Jeremy Lin	11.7	. \$2,100,000	

70