Created by Mikayla Taylor Warmup 1/  $(200 + 43) - (((56 + 23) \times 2 \div$ 

- 1. Draw step 5. How many squares would be in this step?
- 2. Calculate the number of squares in step 40.



Simplify:  $e^{0}w^{1}u^{-2}h^{3}p^{-5}t^{6}s^{7}$  $a^{-4}$ 

## Return Midterm Corrections & Extension

- X = incorrect answer
   1/2 = so-so/incomplete answer
- Corrections people: take a couple minutes to look over it
- Extension people: Please read the key. This shows the errors I had in mind when I made the quiz.

#### Plan:

Rest of this week: Scientific notation Next week: Calculations & Story Problems using Scientific notation

Test at the end of next week

#### Table of Contents (2<sup>nd</sup> Semester)

- p. 1 Exponent Basics (1.2)
- p. 2 Multiplying and Dividing Powers (1.3)
- p. 3 Power to a Power (1.4)
- p. 4 Zero & Negative Exponents (1.5)
- p. 5 Scientific Notation (1.6)

#### **Scientific Notation**

5

**Objectives:** 

- Review scientific notation
- Understand mathematically WHY scientific notation works the way it does

#### POP QUIZ (not graded)

- 1. 4 x 10
- 2. 68 x 100
- 3. 3.2 × 10
- **4**. 3.2 x 100
- 5. 9.251 x 10
- **6**. 97 ÷ 10
- 7. 3 ÷ 10

- 8. 0.2 ÷ 10
- **9**. 52.5 ÷ 10
- 10. 7 ÷ 100

#### Answers

| 1.  | 4 x 10     | 4 |
|-----|------------|---|
| 2.  | 68 x 100   | ł |
| 3.  | 3.2 × 10   | 3 |
| 4.  | 3.2 × 100  | 3 |
| 5.  | 9.251 x 10 | 9 |
| 6.  | 97 ÷ 10    | 9 |
| 7.  | 3 ÷ 10     | • |
| 8.  | 0.2 ÷ 10   | • |
| 9.  | 52.5 ÷ 10  | Į |
| 10. | 7 ÷ 100    | • |

40 6800 32 320 92.51 9.7 .3 .02 5.25 .07

## What is the weight of the earth?

• Let's google "Weight of the earth"

#### Some really big numbers...

### • We don't want to have to always write these big numbers out.

• Shorter way of writing 2,660,000,000?

Scientific Notation

## a x 10<sup>b</sup>

"a" <u>MUST</u> be a number between 1 and 10
"b" must be an <u>integer</u> (non-decimal)

#### Converting from Scientific to Standard Notation <u>Scientific Notation → Standard Notation</u> 1. 9 x 10<sup>4</sup> 90,000

- 2. **3.45** x 10<sup>6</sup> **3,450,000**
- 3. **9.1234** x 10<sup>2</sup> **912.34**
- 4. <u>(leave 2 more blanks for later)</u>

5.

# Writing Numbers in Scientific Notation

#### <u>Standard Notation → Scientific Notation:</u>

- 1.
   8,000,000
   8 x 10<sup>6</sup>

   2.
   75,000
   7.5 x 10<sup>4</sup>

   3.
   14005
   1.4005 x 10<sup>4</sup>
- 4. (leave 2 more blanks for later)

5.

#### COPY:

#### WHY SCIENTIFIC NOTATION WORKS

- o  $8.2 \times 10^4$  means to take 8.2 and multiply it by 10 four times.
- When you multiply anything by ten, you can move the decimal to the right.

## ADVICE FOR UNDERSTANDING THIS:

• Scientific notation is ALL about multiplying and dividing by 10. "Moving the decimal" is only a trick

## o"1.27 x 10<sup>6</sup>" does not mean to put 6 zeroes.

• How many zeroes will it have?

# Which number is bigger... 9 x 10<sup>5</sup> 900,000

20,000,000

Or

2 x 10<sup>8</sup>?

## Which number is bigger... 8.7654321 x 10<sup>3</sup> 8,765.4321

1.23456 x 10<sup>4</sup>? 12,345.6

Or



# Which number is bigger... 2.4 x 10<sup>3</sup> 2400

8 x 10<sup>3</sup>?

8000)

### • The size of big numbers is largely determined by how many digits it has.

- Every time you multiply by 10, you add a digit to a number.
- As long as your "a" number is between 1 and 10, the **exponent** will <u>always</u> tell you which number is bigger!

#### Which number is bigger?