Created by Mikayla Taylor
Warmup $1 /(200+43)-(((56+23) \times 2 \div$

1. Draw step 5. How many squares would be in this step?
2. Calculate the number of squares in step 40.

Simplify:

$$
e^{0} w^{1} u^{-2} h^{3} p^{-5} t^{6} s^{7}
$$

$$
a^{-4}
$$

Return Midterm Corrections \&

 ExtensionoX = incorrect answer

- $1 / 2=$ so-so/incomplete answer
- Corrections people: take a couple minutes to look over it
- Extension people: Please read the key. This shows the errors I had in mind when I made the quiz.

Plan:

Rest of this week: Scientific notation
Next week: Calculations \& Story Problems using Scientific notation

Test at the end of next week

Table of Contents (2 ${ }^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Multiplying and Dividing Powers (1.3)
p. 3 Power to a Power (1.4)
p. 4 Zero \& Negative Exponents (1.5)
p. 5 Scientific Notation (1.6)

Scientific Notation

Objectives:

- Review scientific notation
- Understand mathematically WHY scientific notation works the way it does

POP QUIZ (not graded)

1. 4×10
2. 68×100
3. 3.2×10
4. 3.2×100
5. 9.251×10
6. $97 \div 10$
7. $3 \div 10$
8. $0.2 \div 10$
9. $52.5 \div 10$
10. $7 \div 100$

Answers

1.	4×10	40
2.	68×100	6800
3.	3.2×10	32
4.	3.2×100	320
5.	9.251×10	92.51
6.	$97 \div 10$	9.7
7.	$3 \div 10$.3
8.	$0.2 \div 10$.02
9.	$52.5 \div 10$	5.25
10.	$7 \div 100$.07

What is the weight of the earth?

- Let's google "Weight of the earth"

Some really big numbers...

Distance from Earth to Pluto (miles)
2,660,000,000
Number of cells in your body (estimate)
37,200,000,000,000
Mass of the earth (kilograms)
5,972,000,000,000,000,000,000,000
A googol
$10,000,000,000,000,000,000,000,000,000,000,000,0$ 00,000,000,000,000,000,000,000,000,000,000,000,0 00,000,000,000,000,000,000,000,000,000

- We don't want to have to always write these big numbers out.
o Shorter way of writing 2,660,000,000?

Scientific Notation

$a \times 10^{b}$

- "a" MUST be a number between 1 and 10
- "b" must be an integer (non-decimal)

Converting from Scientific to Standard Notation

Scientific Notation \rightarrow Standard Notation

1. 9×10^{4}
2. 3.45×10^{6}
3. 9.1234×10^{2} 90,000

3,450,000
912.34
4. (leave 2 more blanks for later)
5.

Writing Numbers in Scientific Notation

Standard Notation \rightarrow Scientific Notation:

1. $8,000,000 \quad 8 \times 10^{6}$
2. 75,000
3. 14005
7.5×10^{4} 1.4005×10^{4}
4. (leave 2 more blanks for later) 5.

WHY SCIENTIFIC NOTATION WORKS
o 8.2×10^{4} means to take 8.2 and multiply it by 10 four times.

- When you multiply anything by ten, you can move the decimal to the right.

ADVICE FOR UNDERSTANDING THIS:

- Scientific notation is ALL about multiplying and dividing by 10. "Moving the decimal" is only a trick

COMMON MISTAKE ALERT:
0 " $1.27 \times 10^{6 "}$ does not mean to put 6 zeroes.

- How many zeroes will it have?

Which number is bigger...
$9 \times 10^{5} \quad 900,000$

or

2×10^{8} ?
20,000,000

Which number is bigger...

$8.7654321 \times 10^{3} 8,765.4321$

or

1.23456×10^{4} ?

12,345.6

Which number is bigger... $953 \times 10^{4} \quad 9,530,000$ or
$6 \times 10^{5} ? \quad 600,000$

Which number is bigger... $2.4 \times 10^{3} \quad 2400$

8×10^{3} ?

 8000- The size of big numbers is largely determined by how many digits it has.
- Every time you multiply by 10 , you add a digit to a number.
- As long as your "a" number is between 1 and 10 , the exponent will always tell you which number is bigger!

Which number is bigger?

- 8700000000000000000000000000000000000 000000000000000000000000000000000000 000000000000000000000000000000000000

$$
8.7 \times 10^{107}
$$

- 125000000000000000000000 000000000000000000000000 000000000000000000000000 000000000000000000000000

$$
1.25 \times 10^{95}
$$

