1. Margaret adopted 5 cats from the shelter. Each 2. | The diagrams below represent the first three terms of a sequence. year, she adopts 3 more cats. Let f(1) = 5represent the number of cats Margaret had the first year. Which recursive formula could you use to find the total number of cats Margaret will have after x years?

- A. $f(x) = 3 \cdot f(x+1)$ C. f(x) = f(x+1) + 3
- B. $f(x+1) = 3 \bullet f(x)$ D. f(x+1) = f(x) + 3

Assuming the pattern continues, which formula determines a_n , the number of shaded squares in the nth term?

(1)	$a_n = 4n + 12$	(3) $a_n = 4n + 4$
(2)	$a_n = 4n + 8$	(4) $a_n = 4n + 2$

A pattern begins with two cubes and continues by adding a cube to each side as shown below. 3.

Which function could be used to determine the number of exterior faces in stage n?

- A $f_n = f_{n-1} + 8$, where $f_1 = 10$
- B. $f_n = f_{n-1} + 10$, where $f_1 = 8$
- C. $f_n = 8 \cdot f_{n-1} + 2$, where $f_1 = 10$
- D. $f_n = 10 \cdot f_{n-1} + 2$, where $f_1 = 8$

4. A pool service treats a community's pool by initially adding 600 ounces of chlorine to the water and then 225 ounces of chlorine at the beginning of each week. Each week, 30% of the chlorine in the entire pool evaporates.

Which rule would determine how much chlorine is in the pool after *n* weeks?

(a)
$$a_n = 600 + 225 (n - 1)$$

(b) $a_n = 600 + 225 (0.7) (n - 1)$
(c) $a_1 = 600; a_n = (0.3) a_{n-1} + 225$
(d) $a_1 = 600; a_n = (0.7) a_{n-1} + 225$

3. A pattern begins with two cubes and continues by adding a cube to each side as shown below.

Which function could be used to determine the number of exterior faces in stage n?

- A $f_n = f_{n-1} + 8$, where $f_1 = 10$
- B. $f_n = f_{n-1} + 10$, where $f_1 = 8$
- C. $f_n = 8 \cdot f_{n-1} + 2$, where $f_1 = 10$
- D. $f_n = 10 \cdot f_{n-1} + 2$, where $f_1 = 8$

4. A pool service treats a community's pool by initially adding 600 ounces of chlorine to the water and then 225 ounces of chlorine at the beginning of each week. Each week, 30% of the chlorine in the entire pool evaporates.

Which rule would determine how much chlorine is in the pool after *n* weeks?

(a)
$$a_n = 600 + 225 (n - 1)$$

(b) $a_n = 600 + 225 (0.7) (n - 1)$
(c) $a_1 = 600; a_n = (0.3) a_{n-1} + 225$
(o) $a_1 = 600; a_n = (0.7) a_{n-1} + 225$

1. Margaret adopted 5 cats from the shelter. Each 2.1 The diagrams below represent the first three terms of a sequence. year, she adopts 3 more cats. Let f(1) = 5represent the number of cats Margaret had the first year. Which recursive formula could you use to find the total number of cats Margaret will have after x years?

A.
$$f(x) = 3 \bullet f(x+1)$$
 C. $f(x) = f(x+1) + 3$

B.
$$f(x+1) = 3 \bullet f(x)$$
 D. $f(x+1) = f(x) + 3$

Assuming the pattern continues, which formula determines a_n , the number of shaded squares in the nth term?

(1) $a_n = 4n + 12$	(3) $a_n = 4n + 4$
(2) $a_n = 4n + 8$	(4) $a_n = 4n + 2$