1. Margaret adopted 5 cats from the shelter. Each year, she adopts 3 more cats. Let $f(1)=5$ represent the number of cats Margaret had the first year. Which recursive formula could you use to find the total number of cats Margaret will have after x years?
A. $f(x)=3 \cdot f(x+1)$
B. $\mathrm{f}(\mathrm{x}+1)=3 \cdot \mathrm{f}(\mathrm{x})$
C. $f(x)=f(x+1)+3$
D. $f(x+1)=f(x)+3$
2. The diagrams below represent the first three terms of a sequence.

Assuming the pattern continues, which formula determines a_{n}, the number of shaded squares in the nth term?
(1) $a_{n}=4 n+12$
(3) $a_{n}=4 n+4$
(2) $a_{n}=4 n+8$
(4) $a_{n}=4 n+2$
3. A pattern begins with two cubes and continues by adding a cube to each side as shown below.
Stage 1
Stage 2

10 Exterior Faces

18 Exterior Faces
Stage 3

26 Exterior
Faces

Which function could be used to determine the number of exterior faces in stage \boldsymbol{n} ?

A $f_{n}=f_{n-1}+8$, where $f_{1}=10$
B. $f_{n}=f_{n-1}+10$, where $f_{1}=8$
C. $f_{n}=8 \cdot f_{n-1}+2$, where $f_{1}=10$
D. $f_{n}=10 \cdot f_{n-1}+2$, where $f_{1}=8$
4. A pool service treats a community's pool by initially adding 600 ounces of chlorine to the water and then 225 ounces of chlorine at the beginning of each week. Each week, 30% of the chlorine in the entire pool evaporates.

Which rule would determine how much chlorine is in the pool after n weeks?
(A) $a_{n}=600+225(n-1)$
(B) $a_{n}=600+225(0.7)(n-1)$
(c) $a_{1}=600 ; a_{n}=(0.3) a_{n-1}+225$
(D) $a_{1}=600 ; a_{n}=(0.7) a_{n-1}+225$

3. A pattern begins with two cubes and continues by adding a cube to each side as shown below.

Stage 1

Stage 2

10 Exterior Faces

18 Exterior Stage 3

26 Exterior
Faces

Which function could be used to determine the number of exterior faces in stage \boldsymbol{n} ?
A $f_{n}=f_{n-1}+8$, where $f_{1}=10$
B. $f_{n}=f_{n-1}+10$, where $f_{1}=8$
C. $f_{n}=8 \cdot f_{n-1}+2$, where $f_{1}=10$
D. $f_{n}=10 \cdot f_{n-1}+2$, where $f_{1}=8$

4 A pool service treats a community's pool by initially adding 600 ounces of chlorine to the water and then 225 ounces of chlorine at the beginning of each week. Each week, 30\% of the chlorine in the entire pool evaporates.

Which rule would determine how much chlorine is in the pool after n weeks?
(A) $a_{n}=600+225(n-1)$
(B) $a_{n}=600+225(0.7)(n-1)$
c) $a_{1}=600 ; a_{n}=(0.3) a_{n-1}+225$
(D) $a_{1}=600 ; a_{n}=(0.7) a_{n-1}+225$

1. Margaret adopted 5 cats from the shelter. Each year, she adopts 3 more cats. Let $f(1)=5$ represent the number of cats Margaret had the first year. Which recursive formula could you use to find the total number of cats Margaret will have after x years?
A. $\mathrm{f}(\mathrm{x})=3 \cdot \mathrm{f}(\mathrm{x}+1)$
B. $\mathrm{f}(\mathrm{x}+1)=3 \cdot \mathrm{f}(\mathrm{x})$
C. $f(x)=f(x+1)+3$
D. $f(x+1)=f(x)+3$
2. The diagrams below represent the first three terms of a sequence.

Term 3

Assuming the pattern continues, which formula determines a_{n}, the number of shaded squares in the nth term?
(1) $a_{n}=4 n+12$
(3) $a_{n}=4 n+4$
(2) $a_{n}=4 n+8$
(4) $a_{n}=4 n+2$

