Warmup 5/(The first prime number)

1) The value of an irrational number expression is estimated to be between 18 and 19.
Which could be the expression? Show work for EACH EXPRESSION!
A. $(\sqrt{2})^{9}$
B. $(\sqrt{3})^{5}$

Get a whiteboard!!!
C. $(\sqrt{6})^{3}$
D. $(\sqrt{7})^{3}$

Simplifying Radical Expressions

An expression that contains a radical sign $(\sqrt{ })$ is a radical expression.

Examples of radical expressions:
$\begin{array}{llllll}\sqrt{14} & \sqrt{\ell^{2}+w^{2}} & \sqrt{2 g d} & \frac{\sqrt{d}}{4} & 5 \sqrt{2} & \sqrt{18}\end{array}$
The expression under a radical sign is the radicand. A radicand may contain numbers, variables, or both. It may contain one term or more than one term.

You CAN add together like radicals

Ex: $\sqrt{3}+5 \sqrt{3}=6 \sqrt{3}$

$$
\begin{gathered}
5 \sqrt{6}+2 \sqrt{6} \\
7 \sqrt{6}
\end{gathered}
$$

$18 \sqrt{2}-90 \sqrt{7}$
Unlike Radicals!
Cannot add together.

$10 \sqrt{3}+6 \sqrt{3}$
$16 \sqrt{3}$

$$
12 \sqrt{5}+13 \sqrt{5}
$$

$26 \sqrt{5}$
$10 \sqrt{2}+\sqrt{6}$
Unlike Radicals

$2 \sqrt{9}-9 \sqrt{7}$
 Unlike Radicals!
 Cannot add together.

You can split up radicals into roots of their factors
$-\sqrt{144}=\sqrt{36} \cdot \sqrt{4}$

$$
\begin{aligned}
& \sqrt{100}=\sqrt{20} \cdot \sqrt{5} \\
& \sqrt{100}=\sqrt{25} \cdot \sqrt{4} \\
& \sqrt{100}=\sqrt{10} \cdot \sqrt{10}
\end{aligned}
$$

Simplest Form

- An expression containing square roots is in simplest form when
the radicand has no perfect square factors other than 1.

Simplify:

$$
\begin{gathered}
\sqrt{18} \\
\sqrt{9} \cdot \sqrt{2} \\
3 \sqrt{2}
\end{gathered}
$$

Simplify:

$5 \sqrt{2}$

Simplify:

$6 \sqrt{2}$
Simplify:

$$
\begin{aligned}
& \sqrt{80} \\
& 4 \sqrt{5}
\end{aligned}
$$

Simplify:
$\sqrt{48}$
$4 \sqrt{3}$
0

Simplify:

$$
\underset{2 \sqrt{13}}{\sqrt{52}}
$$

Simplify:

Simplify:

$$
\underset{6 \sqrt{6}}{3 \sqrt{24}}
$$

Simplify:

$6 \sqrt{200}$

$60 \sqrt{2}$

Find the missing side.

